为实现玉米病虫害的原位准确检测与识别,本研究设计了一套基于边缘计算的玉米病虫害智能检测系统。该系统基于YOLOv8模型并进行改进,具体改进方法包括:采用高效视觉网络(EfficientViT)作为主干网络,以降低计算量;在特征融合网络中引入...为实现玉米病虫害的原位准确检测与识别,本研究设计了一套基于边缘计算的玉米病虫害智能检测系统。该系统基于YOLOv8模型并进行改进,具体改进方法包括:采用高效视觉网络(EfficientViT)作为主干网络,以降低计算量;在特征融合网络中引入幻影卷积(GhostConv),进一步减轻计算负担;在C2f模块中引入空间通道重建卷积(SCConv),以增强特征提取性能;将损失函数替换为具有动态非单调聚焦机制的损失函数(WIoU),以提高模型的识别精度。同时,本研究设计了基于边缘计算的病虫害检测系统上位机、下位机架构,并将该轻量化模型部署到Jetson orin nano边缘计算设备上。系统采用Pyside6开发系统可视化界面,除具备识别与训练功能外,还集成了基于大模型技术的AI专家库,可以实现对病虫害的智能化诊断。通过自建的玉米病虫害数据集对改进模型YOLOv8-EGCW进行检验。结果表明,与原始模型YOLOv8m相比,改进模型YOLOv8-EGCW的精确度、召回率和平均精度均值分别提升了0.4个百分点、1.6个百分点和1.2个百分点,参数量和模型大小大幅减少,单张图像检测时间缩短。建立的玉米病虫害检测系统测试结果显示,准确率达到93.4%,检测速度达1 s 25帧。表明该系统能够满足边缘计算环境下玉米病虫害原位检测的需求。展开更多
文摘为实现玉米病虫害的原位准确检测与识别,本研究设计了一套基于边缘计算的玉米病虫害智能检测系统。该系统基于YOLOv8模型并进行改进,具体改进方法包括:采用高效视觉网络(EfficientViT)作为主干网络,以降低计算量;在特征融合网络中引入幻影卷积(GhostConv),进一步减轻计算负担;在C2f模块中引入空间通道重建卷积(SCConv),以增强特征提取性能;将损失函数替换为具有动态非单调聚焦机制的损失函数(WIoU),以提高模型的识别精度。同时,本研究设计了基于边缘计算的病虫害检测系统上位机、下位机架构,并将该轻量化模型部署到Jetson orin nano边缘计算设备上。系统采用Pyside6开发系统可视化界面,除具备识别与训练功能外,还集成了基于大模型技术的AI专家库,可以实现对病虫害的智能化诊断。通过自建的玉米病虫害数据集对改进模型YOLOv8-EGCW进行检验。结果表明,与原始模型YOLOv8m相比,改进模型YOLOv8-EGCW的精确度、召回率和平均精度均值分别提升了0.4个百分点、1.6个百分点和1.2个百分点,参数量和模型大小大幅减少,单张图像检测时间缩短。建立的玉米病虫害检测系统测试结果显示,准确率达到93.4%,检测速度达1 s 25帧。表明该系统能够满足边缘计算环境下玉米病虫害原位检测的需求。