传统的网络文件系统难以满足高性能计算系统的I/O需求,基于对象存储的全局并行文件系统Lustre可以有效地解决传统文件系统在可扩展性、可用性和性能上存在的问题。该文介绍了Lustre文件系统的结构及其优势,对NFS over Lustre进行了性能...传统的网络文件系统难以满足高性能计算系统的I/O需求,基于对象存储的全局并行文件系统Lustre可以有效地解决传统文件系统在可扩展性、可用性和性能上存在的问题。该文介绍了Lustre文件系统的结构及其优势,对NFS over Lustre进行了性能测试,并将测试结果与Lustre文件系统、NFS网络文件系统及本地磁盘Ext3文件系统的性能进行了比较分析,给出了性能差异的原因,提出了一种可行的解决方法。展开更多
Satellite networking communications in navigation satellite system and spacebased deep space exploration have the features of a long delay and high bit error rate (BER). Through analyzing the advantages and disadvan...Satellite networking communications in navigation satellite system and spacebased deep space exploration have the features of a long delay and high bit error rate (BER). Through analyzing the advantages and disadvantages of the Consulta tive Committee for the Space Data System (CCSDS) file delivery protocol (CFDP), a new improved repeated sending file delivery protocol (RSFDP) based on the adaptive repeated sending is put forward to build an efficient and reliable file transmission. According to the estimation of the BER of the transmission link, RSFDP repeatedly sends the lost protocol data units (PDUs) at the stage of the retransmission to improve the success rate and reduce time of the retransmission. Theoretical analyses and results of the Opnet simulation indicate that the performance of RSFDP has significant improvement gains over CFDP in the link with a long delay and high BER. The realizing results based on the space borne filed programmable gate array (FPGA) platform show the applicability of the proposed algorithm.展开更多
In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches d...In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time.展开更多
In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm ...In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.展开更多
文摘传统的网络文件系统难以满足高性能计算系统的I/O需求,基于对象存储的全局并行文件系统Lustre可以有效地解决传统文件系统在可扩展性、可用性和性能上存在的问题。该文介绍了Lustre文件系统的结构及其优势,对NFS over Lustre进行了性能测试,并将测试结果与Lustre文件系统、NFS网络文件系统及本地磁盘Ext3文件系统的性能进行了比较分析,给出了性能差异的原因,提出了一种可行的解决方法。
基金supported by the National High Technology Research and Development Program of China (863 Program) (2011AA1569)
文摘Satellite networking communications in navigation satellite system and spacebased deep space exploration have the features of a long delay and high bit error rate (BER). Through analyzing the advantages and disadvantages of the Consulta tive Committee for the Space Data System (CCSDS) file delivery protocol (CFDP), a new improved repeated sending file delivery protocol (RSFDP) based on the adaptive repeated sending is put forward to build an efficient and reliable file transmission. According to the estimation of the BER of the transmission link, RSFDP repeatedly sends the lost protocol data units (PDUs) at the stage of the retransmission to improve the success rate and reduce time of the retransmission. Theoretical analyses and results of the Opnet simulation indicate that the performance of RSFDP has significant improvement gains over CFDP in the link with a long delay and high BER. The realizing results based on the space borne filed programmable gate array (FPGA) platform show the applicability of the proposed algorithm.
基金This work is supported by‘The Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201714)’‘Weihai Science and Technology Development Program(2016DXGJMS15)’‘Key Research and Development Program in Shandong Provincial(2017GGX90103)’.
文摘In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time.
基金supported by the National Nature Science Foundation of China(No.60672124)the National High Technology Research and Development Programme the of China(No.2007AA01Z221)
文摘In order to improve the performance of peer-to-peer files sharing system under mobile distributed en- vironments, a novel always-optimally-coordinated (AOC) criterion and corresponding candidate selection algorithm are proposed in this paper. Compared with the traditional min-hops criterion, the new approach introduces a fuzzy knowledge combination theory to investigate several important factors that influence files transfer success rate and efficiency. Whereas the min-hops based protocols only ask the nearest candidate peer for desired files, the selection algorithm based on AOC comprehensively considers users' preferences and network requirements with flexible balancing rules. Furthermore, its advantage also expresses in the independence of specified resource discovering protocols, allowing for scalability. The simulation results show that when using the AOC based peer selection algorithm, system performance is much better than the rain-hops scheme, with files successful transfer rate improved more than 50% and transfer time re- duced at least 20%.