期刊文献+
共找到129,510篇文章
< 1 2 250 >
每页显示 20 50 100
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
1
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
2
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
3
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
Global Piecewise Analysis of HIV Model with Bi-Infectious Categories under Ordinary Derivative and Non-Singular Operator with Neural Network Approach
4
作者 Ghaliah Alhamzi Badr Saad TAlkahtani +1 位作者 Ravi Shanker Dubey Mati ur Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期609-633,共25页
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i... This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately. 展开更多
关键词 HIV infection model qualitative scheme approximate solution piecewise global operator neural network
在线阅读 下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
5
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY neural network
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS
6
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
7
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network 被引量:1
8
作者 YANG Luyi LI Haiyang +1 位作者 ZHANG Jin ZHU Yuehe 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期495-508,共14页
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval... It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model. 展开更多
关键词 manned lunar mission free return orbit reachable domain(RD) deep neural network computation efficiency
在线阅读 下载PDF
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance 被引量:1
9
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(Rnn)
在线阅读 下载PDF
Prediction of Hypersonic Aerodynamic Performance of Spherically Blunted Cone Based on Multi-Fidelity Neural Network
10
作者 Jimin Chen Guoyi He 《Journal of Intelligent Learning Systems and Applications》 2025年第1期25-35,共11页
The rapid prediction of aerodynamic performance is critical in the conceptual and preliminary design of hypersonic vehicles. This study focused on axisymmetric body configurations commonly used in such vehicles and pr... The rapid prediction of aerodynamic performance is critical in the conceptual and preliminary design of hypersonic vehicles. This study focused on axisymmetric body configurations commonly used in such vehicles and proposed a multi-fidelity neural network (MFNN) framework to fuse aerodynamic data of varying quality. A data-driven prediction model was constructed using a pointwise modeling method based on generating lines to input geometric features into the network. The MFNN framework combined low-fidelity and high-fidelity networks, trained on aerodynamic performance data from engineering rapid computation methods and CFD, respectively, using spherically blunted cones as examples. The results showed that the MFNN effectively integrated multi-fidelity data, achieving prediction accuracy close to CFD results in most regions, with errors under 5% in key stagnation areas. The model demonstrated strong generalization capabilities for varying cone dimensions and flight conditions. Furthermore, it significantly reduced dependence on high-fidelity data, enabling efficient aerodynamic performance predictions with limited datasets. This study provides a novel methodology for rapid aerodynamic performance prediction, offering both accuracy and efficiency, and contributes to the design of hypersonic vehicles. 展开更多
关键词 Multi-Fidelity neural network Data-Driven Spherically Blunted Cone Axisymmetric Rotating Body Aerothermal Modeling and Prediction
在线阅读 下载PDF
Efficient Identification Method of Interbeds Based on Neural Network Combined with Grey Relational Analysis—Taking the Lower Sub-Member of the Sangonghe Formation in Moxizhuang Oilfield as an Example
11
作者 Yuanbo Song Yankai Zhu Binxin Zeng 《Journal of Geoscience and Environment Protection》 2025年第2期51-68,共18页
The storage layer within the Moxizhuang Oilfield in the Junggar Basin develops various types of interlayer barriers with significant differences in morphology and scale of development. In response to the issues of int... The storage layer within the Moxizhuang Oilfield in the Junggar Basin develops various types of interlayer barriers with significant differences in morphology and scale of development. In response to the issues of interlayer barriers affecting the formation of oil and gas reservoirs and controlling oil-water distribution, this study proposes precise classification and quantitative identification of interlayer barriers in the study area based on a fully connected neural network combined with grey relational analysis. Taking the second member of the Sangonghe Formation (J1S22) in the Moxizhuang Oilfield as an example, combined with previous research, this study statistically analyzes the lithology and logging response characteristics of three types of interlayer barriers in the study area. Based on differences in composition, lithology, and genesis, interlayer barrier types are classified. Sensitive logging data such as natural gamma, acoustic time difference, and resistivity are selected through crossover plots. Grey relational analysis is used to calculate comprehensive discrimination indicators for interlayer barriers. Combined with the fully connected neural network method, an interlayer barrier identification model is established, and model training is conducted to verify the accuracy of interlayer barrier identification. The results indicate that the interlayer barrier identification model based on a fully connected neural network can rapidly and accurately identify interlayer barriers and their types. Its application in the second member of the Sangonghe Formation in the Moxizhuang Oilfield in the Junggar Basin has proven that the identification results of this method for interlayer barriers have a conformity rate exceeding 90% with core data, demonstrating excellent performance in interlayer barrier identification and proving the effectiveness of the model for interlayer barrier identification and prediction in this area. The research conclusions can provide theoretical guidance and technical reference for the identification and evaluation of interlayer barriers in the second member of the Sangonghe Formation in the Moxizhuang Oilfield in the Junggar Basin. 展开更多
关键词 Interlayer Recognition Grey Relational Analysis Fully Connected neural network Second Member of Sangonghe Formation
在线阅读 下载PDF
Application of Artificial Neural Networks in Predicting Malignant Lung Nodules on Chest CT Scans
12
作者 Wenhui Li Yuping Yang +2 位作者 Yixian Liang Pengliang Xu Qiuqiang Chen 《Proceedings of Anticancer Research》 2025年第1期115-121,共7页
Objective:To explore a simple method for improving the diagnostic accuracy of malignant lung nodules based on imaging features of lung nodules.Methods:A retrospective analysis was conducted on the imaging data of 114 ... Objective:To explore a simple method for improving the diagnostic accuracy of malignant lung nodules based on imaging features of lung nodules.Methods:A retrospective analysis was conducted on the imaging data of 114 patients who underwent lung nodule surgery in the Thoracic Surgery Department of the First People’s Hospital of Huzhou from June to September 2024.Imaging features of lung nodules were summarized and trained using a BP neural network.Results:Training with the BP neural network increased the diagnostic accuracy for distinguishing between benign and malignant lung nodules based on imaging features from 84.2%(manual assessment)to 94.1%.Conclusion:Training with the BP neural network significantly improves the diagnostic accuracy of lung nodule malignancy based solely on imaging features. 展开更多
关键词 Lung nodule Malignant lung tumor neural network Chest CT
在线阅读 下载PDF
Research on the X-ray polarization deconstruction method based on hexagonal convolutional neural network
13
作者 Ya-Nan Li Jia-Huan Zhu +5 位作者 Huai-Zhong Gao Hong Li Ji-Rong Cang Zhi Zeng Hua Feng Ming Zeng 《Nuclear Science and Techniques》 2025年第2期49-61,共13页
Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagon... Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing. 展开更多
关键词 X-ray polarization Track reconstruction Deep learning Hexagonal conventional neural network
在线阅读 下载PDF
Predicting outcomes using neural networks in the intensive care unit
14
作者 Gumpeny R Sridhar Venkat Yarabati Lakshmi Gumpeny 《World Journal of Clinical Cases》 2025年第11期1-11,共11页
Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich da... Patients in intensive care units(ICUs)require rapid critical decision making.Modern ICUs are data rich,where information streams from diverse sources.Machine learning(ML)and neural networks(NN)can leverage the rich data for prognostication and clinical care.They can handle complex nonlinear relation-ships in medical data and have advantages over traditional predictive methods.A number of models are used:(1)Feedforward networks;and(2)Recurrent NN and convolutional NN to predict key outcomes such as mortality,length of stay in the ICU and the likelihood of complications.Current NN models exist in silos;their integration into clinical workflow requires greater transparency on data that are analyzed.Most models that are accurate enough for use in clinical care operate as‘black-boxes’in which the logic behind their decision making is opaque.Advan-ces have occurred to see through the opacity and peer into the processing of the black-box.In the near future ML is positioned to help in clinical decision making far beyond what is currently possible.Transparency is the first step toward vali-dation which is followed by clinical trust and adoption.In summary,NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs.The concept should soon be turning into reality. 展开更多
关键词 Large language models HALLUCINATIONS Supervised learning Unsupervised learning Convoluted neural networks BLACK-BOX WORKFLOW
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
15
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
在线阅读 下载PDF
Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks
16
作者 Nanxi DING Hengzhen FENG +5 位作者 H.Z.LOU Shenghua FU Chenglong LI Zihao ZHANG Wenlong MA Zhengqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期341-356,共16页
This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitatio... This research introduces a spectrum-based physics-informed neural network(SP-PINN)model to significantly improve the accuracy of calculation of two-phase flow parameters,surpassing existing methods that have limitations in global and continuous data sampling.SP-PINNs address the challenges of traditional methods in terms of continuous sampling by integrating the spectral analysis and pressure correction into the Navier-Stokes(N-S)equations,enhancing the predictive accuracy especially in critical regions like gas-phase boundaries and velocity peaks.The novel introduction of a pressure-correction module within SP-PINNs mitigates prediction errors,achieving a substantial reduction to 1‰compared with the conventional physics-informed neural network(PINN)approaches.Experimental applications validate the model’s ability to accurately and rapidly predict flow parameters with different sampling time intervals,with the computation time of predicting unsampled data less than 0.01 s.Such advancements signify a 100-fold improvement over traditional DNS calculations,underscoring the model’s potential in the real-time calculation and analysis of multiphase flow dynamics. 展开更多
关键词 physics-informed neural network(PInn) spectral method two-phase flow parameter prediction
在线阅读 下载PDF
A Basis Function Generation Based Digital Predistortion Concurrent Neural Network Model for RF Power Amplifiers
17
作者 SHAO Jianfeng HONG Xi +2 位作者 WANG Wenjie LIN Zeyu LI Yunhua 《ZTE Communications》 2025年第1期71-77,共7页
This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a f... This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a feedforward neural network(FNN)and a convolutional neural network(CNN).The proposed model takes the basic elements that form the bases as input,defined by the generalized memory polynomial(GMP)and dynamic deviation reduction(DDR)models.The FNN generates the basis function and its output represents the basis values,while the CNN generates weights for the corresponding bases.Through the concurrent training of FNN and CNN,the hidden layer coefficients are updated,and the complex multiplication of their outputs yields the trained in-phase/quadrature(I/Q)signals.The proposed model was trained and tested using 300 MHz and 400 MHz broadband data in an orthogonal frequency division multiplexing(OFDM)communication system.The results show that the model achieves an adjacent channel power ratio(ACPR)of less than-48 d B within a 100 MHz integral bandwidth for both the training and test datasets. 展开更多
关键词 basis function generation digital predistortion generalized memory polynomial dynamic deviation reduction neural network
在线阅读 下载PDF
SGP-GCN:A Spatial-Geological Perception Graph Convolutional Neural Network for Long-Term Petroleum Production Forecasting
18
作者 Xin Liu Meng Sun +1 位作者 Bo Lin Shibo Gu 《Energy Engineering》 2025年第3期1053-1072,共20页
Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecas... Long-termpetroleum production forecasting is essential for the effective development andmanagement of oilfields.Due to its ability to extract complex patterns,deep learning has gained popularity for production forecasting.However,existing deep learning models frequently overlook the selective utilization of information from other production wells,resulting in suboptimal performance in long-term production forecasting across multiple wells.To achieve accurate long-term petroleum production forecast,we propose a spatial-geological perception graph convolutional neural network(SGP-GCN)that accounts for the temporal,spatial,and geological dependencies inherent in petroleum production.Utilizing the attention mechanism,the SGP-GCN effectively captures intricate correlations within production and geological data,forming the representations of each production well.Based on the spatial distances and geological feature correlations,we construct a spatial-geological matrix as the weight matrix to enable differential utilization of information from other wells.Additionally,a matrix sparsification algorithm based on production clustering(SPC)is also proposed to optimize the weight distribution within the spatial-geological matrix,thereby enhancing long-term forecasting performance.Empirical evaluations have shown that the SGP-GCN outperforms existing deep learning models,such as CNN-LSTM-SA,in long-term petroleum production forecasting.This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting across multiple wells. 展开更多
关键词 Petroleum production forecast graph convolutional neural networks(GCNs) spatial-geological rela-tionships production clustering attention mechanism
在线阅读 下载PDF
NeurstrucEnergy:A bi-directional GNN model for energy prediction of neural networks in IoT
19
作者 Chaopeng Guo Zhaojin Zhong +1 位作者 Zexin Zhang Jie Song 《Digital Communications and Networks》 SCIE CSCD 2024年第2期439-449,共11页
A significant demand rises for energy-efficient deep neural networks to support power-limited embedding devices with successful deep learning applications in IoT and edge computing fields.An accurate energy prediction... A significant demand rises for energy-efficient deep neural networks to support power-limited embedding devices with successful deep learning applications in IoT and edge computing fields.An accurate energy prediction approach is critical to provide measurement and lead optimization direction.However,the current energy prediction approaches lack accuracy and generalization ability due to the lack of research on the neural network structure and the excessive reliance on customized training dataset.This paper presents a novel energy prediction model,NeurstrucEnergy.NeurstrucEnergy treats neural networks as directed graphs and applies a bi-directional graph neural network training on a randomly generated dataset to extract structural features for energy prediction.NeurstrucEnergy has advantages over linear approaches because the bi-directional graph neural network collects structural features from each layer's parents and children.Experimental results show that NeurstrucEnergy establishes state-of-the-art results with mean absolute percentage error of 2.60%.We also evaluate NeurstrucEnergy in a randomly generated dataset,achieving the mean absolute percentage error of 4.83%over 10 typical convolutional neural networks in recent years and 7 efficient convolutional neural networks created by neural architecture search.Our code is available at https://github.com/NEUSoftGreenAI/NeurstrucEnergy.git. 展开更多
关键词 Internet of things neural network energy prediction Graph neural networks Graph structure embedding Multi-head attention
在线阅读 下载PDF
HGNN-ETC: Higher-Order Graph Neural Network Based on Chronological Relationships for Encrypted Traffic Classification
20
作者 Rongwei Yu Xiya Guo +1 位作者 Peihao Zhang Kaijuan Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第11期2643-2664,共22页
Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traff... Encrypted traffic plays a crucial role in safeguarding network security and user privacy.However,encrypting malicious traffic can lead to numerous security issues,making the effective classification of encrypted traffic essential.Existing methods for detecting encrypted traffic face two significant challenges.First,relying solely on the original byte information for classification fails to leverage the rich temporal relationships within network traffic.Second,machine learning and convolutional neural network methods lack sufficient network expression capabilities,hindering the full exploration of traffic’s potential characteristics.To address these limitations,this study introduces a traffic classification method that utilizes time relationships and a higher-order graph neural network,termed HGNN-ETC.This approach fully exploits the original byte information and chronological relationships of traffic packets,transforming traffic data into a graph structure to provide the model with more comprehensive context information.HGNN-ETC employs an innovative k-dimensional graph neural network to effectively capture the multi-scale structural features of traffic graphs,enabling more accurate classification.We select the ISCXVPN and the USTC-TK2016 dataset for our experiments.The results show that compared with other state-of-the-art methods,our method can obtain a better classification effect on different datasets,and the accuracy rate is about 97.00%.In addition,by analyzing the impact of varying input specifications on classification performance,we determine the optimal network data truncation strategy and confirm the model’s excellent generalization ability on different datasets. 展开更多
关键词 Encrypted network traffic graph neural network traffic classification deep learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部