期刊文献+
共找到766篇文章
< 1 2 39 >
每页显示 20 50 100
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:28
1
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
2
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE non-dominated sorting Ge-netic algorithm (NSGA)
在线阅读 下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm 被引量:1
3
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using non-dominated sorting genetic algorithm-II 被引量:3
4
作者 Sunil Dhingra Gian Bhushan Kashyap Kumar Dubey 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第1期81-94,共14页
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response su... The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi- objective optimization problem is formulated. Non- dominated sorting genetic algorithm-II is used in predict- ing the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine outputand emission parameters depending upon their own requirements. 展开更多
关键词 jatropha biodiesel fuel properties responsesurface methodology multi-objective optimization non-dominated sorting genetic algorithm-II
原文传递
Optimization of dynamic aperture by using non-dominated sorting genetic algorithm-Ⅱ in a diffraction-limited storage ring with solenoids for generating round beam
5
作者 Chongchong Du Sheng Wang +2 位作者 Jiuqing Wang Saike Tian Jinyu Wan 《Radiation Detection Technology and Methods》 CSCD 2023年第2期271-278,共8页
Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing t... Purpose Round beam,i.e.,with equal horizontal and vertical emittance,is preferable than a horizontally flat one for some beamline applications in Diffraction-limited storage rings(DLSRs),for the purposes of reducing the number of photons getting discarded and better phase space match between photon and electron beam.Conventional methods of obtaining round beam inescapably results in a reduction of dynamic aperture(DA).In order to recover the DA as much as possible for improving the injection efficiency,the DA optimization by using Non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)to generate round beam,particularly to one of the designed lattice of the High Energy Photon Source(HEPS)storage ring,are presented.Method According to the general unconstrained model of NSGA-Ⅱ,we modified the standard model by using parallel computing to optimize round beam lattices with errors,especially for a strong coupling,such as solenoid scheme.Results and conclusion The results of numerical tracking verify the correction of the theory framework of solenoids with fringe fields and demonstrates the feasibility on the HEPS storage ring with errors to operate in round beam mode after optimizing DA. 展开更多
关键词 Diffraction-limited storage rings Round beam non-dominated sorting genetic algorithm-Ⅱ High energy photon source
原文传递
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:4
6
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (NSGA-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-ⅡFOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION 被引量:4
7
作者 WEI Tian FAN Wenhui XU Huayu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期18-24,共7页
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode... Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply. 展开更多
关键词 Greedy non-dominated sorting in genetic algorithm-Ⅱ (GNSGA-Ⅱ) Vehicle routing problem (VRP) Multi-objective optimization
在线阅读 下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
8
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
在线阅读 下载PDF
Modeling and Optimization of Electrical Discharge Machining of SiC Parameters, Using Neural Network and Non-Dominating Sorting Genetic Algorithm (NSGA II)
9
作者 Ramezan Ali MahdaviNejad 《Materials Sciences and Applications》 2011年第6期669-675,共7页
Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present... Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work. 展开更多
关键词 Electro DISCHARGE MACHINING non-dominating sorting algorithm Neural Network REFEL SIC
在线阅读 下载PDF
Satellite constellation design with genetic algorithms based on system performance
10
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
Improved genetic algorithm for nonlinear programming problems 被引量:8
11
作者 Kezong Tang Jingyu Yang +1 位作者 Haiyan Chen Shang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期540-546,共7页
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w... An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms. 展开更多
关键词 genetic algorithm(GA) nonlinear programming problem constraint handling non-dominated solution optimization problem.
在线阅读 下载PDF
An Improved Genetic Algorithm for Problem of Genome Rearrangement
12
作者 MO Zhongxi ZENG Tao 《Wuhan University Journal of Natural Sciences》 CAS 2006年第3期498-502,共5页
In view of the fact that the problem of sorting unsigned permutation by reversal is NP-hard, while the problem of sorting signed permutation by reversal can be solved easily, in this paper, we first transform an unsig... In view of the fact that the problem of sorting unsigned permutation by reversal is NP-hard, while the problem of sorting signed permutation by reversal can be solved easily, in this paper, we first transform an unsigned permutation of length n,π (π1 ,… ,πn), into a set S(π) containing 2^n signed permutations, so that the reversal distance of π is equal to the reversal distance of the optimal signed permutation in S(π). Then analyze the structural features of S(π) by creating a directed graph and induce a new computing model of this question. Finally, an improved genetic algorithm for solving the new model is proposed. Experimental results show that the proposed model and algorithm is very efficient in practice. 展开更多
关键词 genome rearrangement sorting by reversals genetic algorithm directed graph
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
13
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
Finding an optimization of the plate element of Egyptian research reactor using genetic algorithm
14
作者 WAHED Mohamed IBRAHIM Wesam EFFAT Ahmed 《Nuclear Science and Techniques》 SCIE CAS CSCD 2008年第5期314-320,共7页
The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of t... The second Egyptian research reactor ET-RR-2 went critical on the 27th of November 1997.The National Center of Nuclear Safety and Radiation Control (NCNSRC) has the responsibility of the evaluation and assessment of the safety of this reactor.The purpose of this paper is to present an approach to optimization of the fuel element plate. For an efficient search through the solution space we use a multi objective genetic algorithm which allows us to identify a set of Pareto optimal solutions providing the decision maker with the complete spectrum of optimal solutions with respect to the various targets.The aim of this paper is to propose a new approach for optimizing the fuel element plate in the reactor.The fuel element plate is designed with a view to improve reliability and lifetime and it is one of the most important elements during the shut down.In this present paper,we present a conceptual design approach for fuel element plate,in conjunction with a genetic algorithm to obtain a fuel plate that maximizes a fitness value to optimize the safety design of the fuel plate. 展开更多
关键词 埃及核反应堆 遗传算法 燃料元件 核技术
在线阅读 下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
15
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
基于非支配排序遗传算法NSGA-Ⅲ的多目标屏蔽智能优化研究
16
作者 王梦琪 郑征 +3 位作者 梅其良 彭超 高静 周岩 《原子能科学技术》 北大核心 2025年第2期422-428,共7页
本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化... 本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化的屏蔽方案。基于优化后的屏蔽方案,建立真实的三维蒙特卡罗计算模型,和基于混凝土、聚乙烯或含硼硅树脂的方案进行对比,评估优化方案的屏蔽效果。评价指标包括屏蔽厚度、重量、总剂量率和价格等。结果显示,基于所开发的多目标屏蔽智能优化方法优化得到的方案各有特点,包含了多个优选的方案,为设计者提供了更丰富的选择。 展开更多
关键词 多目标优化算法 屏蔽 乏燃料运输船舶 第3代非支配排序遗传算法
在线阅读 下载PDF
发夹式换热器壳程流体传热特性及多目标优化
17
作者 李雅侠 王鑫 +2 位作者 李百慧 张丽 张静 《北京化工大学学报(自然科学版)》 北大核心 2025年第2期26-33,共8页
采用数值模拟方法研究了发夹式换热器的壳程流体换热特性,并以提高综合性能指标PEC(总换热量与总功耗之比)和减小无量纲材料成本M'(换热器材料成本与原结构材料成本之比)为目标建立神经网络模型,采用非支配排序遗传算法(NSGA-Ⅱ)对... 采用数值模拟方法研究了发夹式换热器的壳程流体换热特性,并以提高综合性能指标PEC(总换热量与总功耗之比)和减小无量纲材料成本M'(换热器材料成本与原结构材料成本之比)为目标建立神经网络模型,采用非支配排序遗传算法(NSGA-Ⅱ)对无量纲参数折流板间距l'、折流板缺口高度h'、曲率半径r'和雷诺数Re这4个设计变量进行多目标优化。结果显示:在本研究范围内,弯管段的换热量占换热器总换热量的5.0%~16.3%,而功耗仅占总功耗的0.5%~1.0%,说明弯管段结构的存在使得发夹式换热器在功耗小幅增加的情况下换热性能显著提高;参数优化后,得到l'的最佳取值为2.50,h'、r'、Re的最佳取值范围分别为0.33~0.45、0.80~1.30、8000~11000。从优化解集中选取两个代表性解,与原结构相比,优化结构1的PEC提高了25.12%,M'基本不变;优化结构2的PEC提高了17.93%,M'值降低了6.56%,结果表明多目标优化对发夹式换热器结构参数的优化效果明显。 展开更多
关键词 发夹式换热器 结构参数 强化传热 非支配排序遗传算法(NSGA-Ⅱ) 多目标优化
在线阅读 下载PDF
需求不确定下基于不同碳税机制的双目标多式联运路径优化
18
作者 张旭 张海燕 +1 位作者 袁旭梅 秦怡华 《公路交通科技》 北大核心 2025年第2期41-51,共11页
【目标】针对不同碳税机制下的多式联运路径优化问题,考虑了突发性补货或季节性变化等意外因素带来的需求不确定性。【方法】分别在统一碳税机制和分段累进碳税机制下,以总成本和总碳排放量最小为目标,构建随机需求下的双目标0-1路径优... 【目标】针对不同碳税机制下的多式联运路径优化问题,考虑了突发性补货或季节性变化等意外因素带来的需求不确定性。【方法】分别在统一碳税机制和分段累进碳税机制下,以总成本和总碳排放量最小为目标,构建随机需求下的双目标0-1路径优化模型,并基于Monte Carlo模拟和大数定律极大化不确定目标的期望值对模型进行转换。设计改进的非支配排序遗传算法对模型求解以获得满足目标要求的相对较优解。该算法能够在避免“早熟”缺陷的基础上扩大搜索空间与范围以期获得更加优秀的个体与方案。通过具体算例分析模型与算法对于双碳背景下运输问题的适用性,同时探讨不同碳税机制对总成本和总碳排放量的影响及其在需求波动条件下的适用范围和有效性。【结果】双目标策略下企业仅需略微提高成本即可取得一定的减排效果,更适合双碳背景下的运输场景。【结论】企业的碳排放控制效果在固定碳税机制或分段累进碳税机制下均会受到碳税率的影响,但相比统一碳税机制,分段累进碳税机制在高需求不确定时具有更加明显的减排效果与优势,应考虑企业现有能力与减排技术水平,确定合适的碳税率与排放阈值,以调动企业减排积极性。 展开更多
关键词 运输经济 双目标路径优化 改进的非支配排序遗传算法 多式联运 需求不确定 碳税机制
原文传递
考虑转港调度的内河港口群多泊位联合配置策略
19
作者 高攀 黄柳森 赵旭 《交通运输系统工程与信息》 北大核心 2025年第2期328-337,共10页
为缓解内河港口泊位资源供需时空不匹配问题,将单港泊位分配拓展到腹地高度重叠的内河港口群中,通过考虑不同港口之间的转港调度作业,探索多泊位联合配置优化策略。本文以船舶总成本和在港总时间最小化为目标,建立港口群多泊位联合配置... 为缓解内河港口泊位资源供需时空不匹配问题,将单港泊位分配拓展到腹地高度重叠的内河港口群中,通过考虑不同港口之间的转港调度作业,探索多泊位联合配置优化策略。本文以船舶总成本和在港总时间最小化为目标,建立港口群多泊位联合配置优化模型。依据模型特点,设计改进的非支配排序遗传算法求解模型,并探讨调度实施前后的优化效果。以我国某内河流域的一个港口群为例,对配置模型和优化算法进行可行性验证。实验结果显示:实行联合配置策略的船舶总成本和在港总时间比独立配置均有所降低,且当船舶到港规模由20艘增加到80艘时,实施联合配置策略前后的成本和时间的降低比例平均分别提升至24%和40%左右。同时,当允许转港的船舶数量比例从0增加到20%时,船舶总成本和在港总时间的下降幅度较大;比例超过20%后,呈现边际递减效应。因此,需充分考虑转港调度成本,通过设置适当的转港数量阈值,提升港口群运作效率。 展开更多
关键词 水路运输 联合配置策略 非支配排序遗传算法 内河港口群 多目标优化
在线阅读 下载PDF
基于非支配排序遗传算法的多目标轨迹优化方法
20
作者 杨丽荣 刘洋 周俊 《实验室研究与探索》 北大核心 2025年第2期31-36,共6页
机器人轨迹规划中,采用五次非均匀有理B样条(NURBS)插值算法可以在一定程度上提高机械臂轨迹规划的平滑性、连续性和稳定性,但无法解决运行时间、能耗及冲击的多目标最优值求解问题。为此,提出了一种面向实验室液压破碎机械臂轨迹优化... 机器人轨迹规划中,采用五次非均匀有理B样条(NURBS)插值算法可以在一定程度上提高机械臂轨迹规划的平滑性、连续性和稳定性,但无法解决运行时间、能耗及冲击的多目标最优值求解问题。为此,提出了一种面向实验室液压破碎机械臂轨迹优化的非支配排序遗传算法(NSGA-Ⅲ)。根据收敛性指标和间距指标选取Pareto最优解后进行轨迹优化,并与NSGA-Ⅱ对比。结果表明,在通过五次NURBS插值算法得到一条关节轨迹曲线后采用NSGA-Ⅲ进行轨迹优化,可以获得运行时间-能耗-冲击的Pareto最优解。相较于优化前,机械臂运行时间降低16%,最大关节角速度、角加速度及角加加速度分别降低8%、17%、19%。 展开更多
关键词 多目标轨迹优化 非支配排序遗传算法 参考点机制 收敛性指标 间距指标
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部