期刊文献+
共找到6,203篇文章
< 1 2 250 >
每页显示 20 50 100
Unsupervised Meteorological Downscaling Based on Dual Learning and Subgrid-scale Auxiliary Information
1
作者 Jing HU Jialing MU +1 位作者 Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期53-66,共14页
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.... Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes. 展开更多
关键词 DOWNSCALING UNSUPERVISED deep learning dual learning auxiliary information
在线阅读 下载PDF
A Study on Integrative and Instrumental Motivations and Learning Strategies of PhD Dissertation
2
作者 Zhou Li Huisuan Wei 《Journal of Contemporary Educational Research》 2025年第1期163-168,共6页
The research topic of the author’s PhD dissertation is“The Impact of Motivation Cultivation on English Autonomous Learning among University Students in Hunan,China—A Mediating Role of Learning Strategy.”Within thi... The research topic of the author’s PhD dissertation is“The Impact of Motivation Cultivation on English Autonomous Learning among University Students in Hunan,China—A Mediating Role of Learning Strategy.”Within this topic,three key variables are identified:the dependent variable(DV),the independent variable(IV),and the mediating variable(MV).Specifically,the DV refers to English autonomous learning,the IV refers to motivation,and the MV refers to learning strategy.The research establishes that the MV(learning strategy)is an integral component of information processing theory(IPT).Consequently,the dissertation incorporates integrative and instrumental motivation theories alongside IPT as its foundational theoretical framework.This paper aims to explore the theoretical framework of the PhD dissertation in detail,focusing on the interplay of these three theories. 展开更多
关键词 English autonomous learning Motivation learning strategy Integrative motivation theory Instrumental motivation theory information processing theory
在线阅读 下载PDF
Knowledge Driven Machine Learning Towards Interpretable Intelligent Prognostics and Health Management:Review and Case Study
3
作者 Ruqiang Yan Zheng Zhou +6 位作者 Zuogang Shang Zhiying Wang Chenye Hu Yasong Li Yuangui Yang Xuefeng Chen Robert X.Gao 《Chinese Journal of Mechanical Engineering》 2025年第1期31-61,共31页
Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpret... Despite significant progress in the Prognostics and Health Management(PHM)domain using pattern learning systems from data,machine learning(ML)still faces challenges related to limited generalization and weak interpretability.A promising approach to overcoming these challenges is to embed domain knowledge into the ML pipeline,enhancing the model with additional pattern information.In this paper,we review the latest developments in PHM,encapsulated under the concept of Knowledge Driven Machine Learning(KDML).We propose a hierarchical framework to define KDML in PHM,which includes scientific paradigms,knowledge sources,knowledge representations,and knowledge embedding methods.Using this framework,we examine current research to demonstrate how various forms of knowledge can be integrated into the ML pipeline and provide roadmap to specific usage.Furthermore,we present several case studies that illustrate specific implementations of KDML in the PHM domain,including inductive experience,physical model,and signal processing.We analyze the improvements in generalization capability and interpretability that KDML can achieve.Finally,we discuss the challenges,potential applications,and usage recommendations of KDML in PHM,with a particular focus on the critical need for interpretability to ensure trustworthy deployment of artificial intelligence in PHM. 展开更多
关键词 PHM Knowledge driven machine learning Signal processing Physics informed INTERPRETABILITY
在线阅读 下载PDF
Robust and Discriminative Feature Learning via Mutual Information Maximization for Object Detection in Aerial Images
4
作者 Xu Sun Yinhui Yu Qing Cheng 《Computers, Materials & Continua》 SCIE EI 2024年第9期4149-4171,共23页
Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity an... Object detection in unmanned aerial vehicle(UAV)aerial images has become increasingly important in military and civil applications.General object detection models are not robust enough against interclass similarity and intraclass variability of small objects,and UAV-specific nuisances such as uncontrolledweather conditions.Unlike previous approaches focusing on high-level semantic information,we report the importance of underlying features to improve detection accuracy and robustness fromthe information-theoretic perspective.Specifically,we propose a robust and discriminative feature learning approach through mutual information maximization(RD-MIM),which can be integrated into numerous object detection methods for aerial images.Firstly,we present the rank sample mining method to reduce underlying feature differences between the natural image domain and the aerial image domain.Then,we design a momentum contrast learning strategy to make object features similar to the same category and dissimilar to different categories.Finally,we construct a transformer-based global attention mechanism to boost object location semantics by leveraging the high interrelation of different receptive fields.We conduct extensive experiments on the VisDrone and Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)datasets to prove the effectiveness of the proposed method.The experimental results show that our approach brings considerable robustness gains to basic detectors and advanced detection methods,achieving relative growth rates of 51.0%and 39.4%in corruption robustness,respectively.Our code is available at https://github.com/cq100/RD-MIM(accessed on 2 August 2024). 展开更多
关键词 Aerial images object detection mutual information contrast learning attention mechanism
在线阅读 下载PDF
The Fusion of Temporal Sequence with Scene Priori Information in Deep Learning Object Recognition
5
作者 Yongkang Cao Fengjun Liu +2 位作者 Xian Wang Wenyun Wang Zhaoxin Peng 《Open Journal of Applied Sciences》 2024年第9期2610-2627,共18页
For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior fe... For some important object recognition applications such as intelligent robots and unmanned driving, images are collected on a consecutive basis and associated among themselves, besides, the scenes have steady prior features. Yet existing technologies do not take full advantage of this information. In order to take object recognition further than existing algorithms in the above application, an object recognition method that fuses temporal sequence with scene priori information is proposed. This method first employs YOLOv3 as the basic algorithm to recognize objects in single-frame images, then the DeepSort algorithm to establish association among potential objects recognized in images of different moments, and finally the confidence fusion method and temporal boundary processing method designed herein to fuse, at the decision level, temporal sequence information with scene priori information. Experiments using public datasets and self-built industrial scene datasets show that due to the expansion of information sources, the quality of single-frame images has less impact on the recognition results, whereby the object recognition is greatly improved. It is presented herein as a widely applicable framework for the fusion of information under multiple classes. All the object recognition algorithms that output object class, location information and recognition confidence at the same time can be integrated into this information fusion framework to improve performance. 展开更多
关键词 Computer Vison Object Recognition Deep learning Consecutive Scene information Fusion
在线阅读 下载PDF
Research on Heterogeneous Information Network Link Prediction Based on Representation Learning
6
作者 Yan Zhao Weifeng Rao +1 位作者 Zihui Hu Qi Zheng 《Journal of Electronic Research and Application》 2024年第5期32-37,共6页
A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and oth... A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification. 展开更多
关键词 Heterogeneous information network Link prediction Presentation learning Deep learning Node embedding
在线阅读 下载PDF
Effects of Media and Distributed Information on Collaborative Concept-Learning 被引量:1
7
作者 傅小兰 《心理与行为研究》 2005年第4期248-255,共8页
The present study explores the effects of media and distributed information on the performance of remotely located pairs of people′s completing a concept-learning task. Sixty pairs performed a concept-learning task u... The present study explores the effects of media and distributed information on the performance of remotely located pairs of people′s completing a concept-learning task. Sixty pairs performed a concept-learning task using either audio-only or audio-plus-video for communication. The distribution of information includes three levels: with totally same information, with partly same information, and with totally different information. The subjects′ primary psychological functions were also considered in this study. The results showed a significant main effect of the amount of information shared by the subjects on the number of the negative instances selected by the subjects, and a significant main effect of media on the time taken by the subjects to complete the task. 展开更多
关键词 学习观 学习心理学 电视传媒 心理应用
在线阅读 下载PDF
Q-learning算法优化的多种LSTM的超短期风电功率预测
8
作者 辛鹏 李超然 +2 位作者 张勋 刘培瑞 袁成磊 《吉林化工学院学报》 2024年第9期1-8,共8页
针对风电功率预测中存在的特征选择困难和单一模型不稳定问题,提出了一种融合Q-learning算法的多种LSTM网络(Q_L-L-C-A)的超短期风电功率预测方法。该方法利用最大信息系数(MIC)对风电数据进行特征筛选,采用变分模态分解(VMD)将风电场... 针对风电功率预测中存在的特征选择困难和单一模型不稳定问题,提出了一种融合Q-learning算法的多种LSTM网络(Q_L-L-C-A)的超短期风电功率预测方法。该方法利用最大信息系数(MIC)对风电数据进行特征筛选,采用变分模态分解(VMD)将风电场功率数据分解为多个频率模态作为额外特征,将筛选和分解后的数据作为模型输入,进行LSTM、CNN-LSTM、Attention-LSTM这3种网络模型预测。在此基础上,依据Q-learning算法对3种模型的预测结果进行动态权重分配,以获得更优的组合预测结果。为了验证所提出Q_L-L-C-A模型的预测效果,以某风电场实测数据为模型输入,与6种模型进行对比实验,实验结果表明:所提出的Q_L-L-C-A模型的均方根误差和平均绝对百分误差结果均优于LSTM、CNN-LSTM、Atten-LSTM等模型,Q_L-L-C-A模型在超短期风电功率预测中具有更高的准确性和稳定性。 展开更多
关键词 功率预测 组合模型 Q-learning算法 深度学习 最大信息系数 变分模态分解
在线阅读 下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems 被引量:1
9
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
在线阅读 下载PDF
Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning 被引量:14
10
作者 LU Heng FU Xiao +3 位作者 LIU Chao LI Long-guo HE Yu-xin LI Nai-wen 《Journal of Mountain Science》 SCIE CSCD 2017年第4期731-741,共11页
The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-hei... The development of precision agriculture demands high accuracy and efficiency of cultivated land information extraction. As a new means of monitoring the ground in recent years, unmanned aerial vehicle (UAV) low-height remote sensing technique, which is flexible, efficient with low cost and with high resolution, is widely applied to investing various resources. Based on this, a novel extraction method for cultivated land information based on Deep Convolutional Neural Network and Transfer Learning (DTCLE) was proposed. First, linear features (roads and ridges etc.) were excluded based on Deep Convolutional Neural Network (DCNN). Next, feature extraction method learned from DCNN was used to cultivated land information extraction by introducing transfer learning mechanism. Last, cultivated land information extraction results were completed by the DTCLE and eCognifion for cultivated land information extraction (ECLE). The location of the Pengzhou County and Guanghan County, Sichuan Province were selected for the experimental purpose. The experimental results showed that the overall precision for the experimental image 1, 2 and 3 (of extracting cultivated land) with the DTCLE method was 91.7%, 88.1% and 88.2% respectively, and the overall precision of ECLE is 9o.7%, 90.5% and 87.0%, respectively. Accuracy of DTCLE was equivalent to that of ECLE, and also outperformed ECLE in terms of integrity and continuity. 展开更多
关键词 Unmanned aerial vehicle Cultivated land Deep convolutional neural network Transfer learning information extraction
在线阅读 下载PDF
MINDTL: Multiple Incomplete Domains Transfer Learning for Information Recommendation 被引量:3
11
作者 Ming He Jiuling Zhang Jiang Zhang 《China Communications》 SCIE CSCD 2017年第11期218-236,共19页
Collaborative filtering is the most popular and successful information recommendation technique. However, it can suffer from data sparsity issue in cases where the systems do not have sufficient domain information. Tr... Collaborative filtering is the most popular and successful information recommendation technique. However, it can suffer from data sparsity issue in cases where the systems do not have sufficient domain information. Transfer learning, which enables information to be transferred from source domains to target domain, presents an unprecedented opportunity to alleviate this issue. A few recent works focus on transferring user-item rating information from a dense domain to a sparse target domain, while almost all methods need that each rating matrix in source domain to be extracted should be complete. To address this issue, in this paper we propose a novel multiple incomplete domains transfer learning model for cross-domain collaborative filtering. The transfer learning process consists of two steps. First, the user-item ratings information in incomplete source domains are compressed into multiple informative compact cluster-level matrixes, which are referred as codebooks. Second, we reconstruct the target matrix based on the codebooks. Specifically, for the purpose of maximizing the knowledge transfer, we design a new algorithm to learn the rating knowledge efficiently from multiple incomplete domains. Extensive experiments on real datasets demonstrate that our proposed approach significantly outperforms existing methods. 展开更多
关键词 recommender system information recommendation collaborative filtering transfer learning
在线阅读 下载PDF
Iterative Learning Control With Incomplete Information: A Survey 被引量:13
12
作者 Dong Shen Senior Member IEEE 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第5期885-901,共17页
Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, includ... Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, including passive and active types, can cause data loss or fragment due to various factors. Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection, storage, transmission, and processing, such as data dropouts, delays, disordering, and limited transmission bandwidth. Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied, such as sampling and quantization. This survey emphasizes two aspects: the first one is how to guarantee good learning performance and tracking performance with passive incomplete data, and the second is how to balance the control performance index and data demand by active means. The promising research directions along this topic are also addressed, where data robustness is highly emphasized. This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance, quantitatively, and promote further developments of ILC theory. Index Terms--Data dropout, data robustness, incomplete in- formation, iterative learning controi(ILC), quantized control, sampled control, varying lengths. 展开更多
关键词 Data dropout data robustness incomplete information iterative learning control(ILC) quantized control sampled control varying lengths
在线阅读 下载PDF
Physics informed machine learning: Seismic wave equation 被引量:6
13
作者 Sadegh Karimpouli Pejman Tahmasebi 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期1993-2001,共9页
Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black ... Similar to many fields of sciences,recent deep learning advances have been applied extensively in geosciences for both small-and large-scale problems.However,the necessity of using large training data and the’black box’nature of learning have limited them in practice and difficult to interpret.Furthermore,including the governing equations and physical facts in such methods is also another challenge,which entails either ignoring the physics or simplifying them using unrealistic data.To address such issues,physics informed machine learning methods have been developed which can integrate the governing physics law into the learning process.In this work,a 1-dimensional(1 D)time-dependent seismic wave equation is considered and solved using two methods,namely Gaussian process(GP)and physics informed neural networks.We show that these meshless methods are trained by smaller amount of data and can predict the solution of the equation with even high accuracy.They are also capable of inverting any parameter involved in the governing equation such as wave velocity in our case.Results show that the GP can predict the solution of the seismic wave equation with a lower level of error,while our developed neural network is more accurate for velocity(P-and S-wave)and density inversion. 展开更多
关键词 Gaussian process(GP) Physics informed machine learning(PIML) Seismic wave OPTIMIZATION
在线阅读 下载PDF
Multi-agent reinforcement learning for edge information sharing in vehicular networks 被引量:3
14
作者 Ruyan Wang Xue Jiang +5 位作者 Yujie Zhou Zhidu Li Dapeng Wu Tong Tang Alexander Fedotov Vladimir Badenko 《Digital Communications and Networks》 SCIE CSCD 2022年第3期267-277,共11页
To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This pape... To guarantee the heterogeneous delay requirements of the diverse vehicular services,it is necessary to design a full cooperative policy for both Vehicle to Infrastructure(V2I)and Vehicle to Vehicle(V2V)links.This paper investigates the reduction of the delay in edge information sharing for V2V links while satisfying the delay requirements of the V2I links.Specifically,a mean delay minimization problem and a maximum individual delay minimization problem are formulated to improve the global network performance and ensure the fairness of a single user,respectively.A multi-agent reinforcement learning framework is designed to solve these two problems,where a new reward function is proposed to evaluate the utilities of the two optimization objectives in a unified framework.Thereafter,a proximal policy optimization approach is proposed to enable each V2V user to learn its policy using the shared global network reward.The effectiveness of the proposed approach is finally validated by comparing the obtained results with those of the other baseline approaches through extensive simulation experiments. 展开更多
关键词 Vehicular networks Edge information sharing Delay guarantee Multi-agent reinforcement learning Proximal policy optimization
在线阅读 下载PDF
Detection of Learner’s Concentration in Distance Learning System with Multiple Biological Information 被引量:2
15
作者 Kimario Nizetha Daniel Eiji Kamioka 《Journal of Computer and Communications》 2017年第4期1-15,共15页
The trend of distance learning education has increased year by year because of the rapid advancement of information and communication technologies. Distance learning system can be regarded as one of ubiquitous computi... The trend of distance learning education has increased year by year because of the rapid advancement of information and communication technologies. Distance learning system can be regarded as one of ubiquitous computing applications since the learners can study anywhere even in mobile environments. However, the instructor cannot know if the learners comprehend the lecture or not since each learner is physically isolated. Therefore, a framework which detects the learners’ concentration condition is required. If a distance learning system obtains the information that many learners are not concentrated on the class due to the incomprehensible lecture style, the instructor can perceive it through the system and change the presentation strategy. This is a context-aware technology which is widely used for ubiquitous computing services. In this paper, an efficient distance learning system, which accurately detects learners’ concentration condition during a class, is proposed. The proposed system uses multiple biological information which are learners’ eye movement metrics, i.e. fixation counts, fixation rate, fixation duration and average saccade length obtained by an eye tracking system. The learners’ concentration condition is classified by using machine learning techniques. The proposed system has performed the detection accuracy of 90.7% when Multilayer Perceptron is used as a classifier. In addition, the effectiveness of the proposed eye metrics has been confirmed. Furthermore, it has been clarified that the fixation duration is the most important eye metric among the four metrics based on the investigation of evaluation experiment. 展开更多
关键词 DISTANCE learning BIOLOGICAL informATION CONCENTRATION Eye Tracking Fixation Duration Multilayer PERCEPTRON
在线阅读 下载PDF
An Intelligent Learning Algorithm for Improving BIM Object Classification and Recognition
16
作者 WANG Ru BENMANSOUR Oussama XING Ying 《施工技术(中英文)》 CAS 2024年第20期86-93,共8页
Building information modeling(BIM)object classification takes a lot of time and energy.Misclassification or omission of any object may lead to the emergence of abnormal results,which have a great impact on the project... Building information modeling(BIM)object classification takes a lot of time and energy.Misclassification or omission of any object may lead to the emergence of abnormal results,which have a great impact on the project workflow and results.Roundly understanding BIM object classification,by improving Swin Transformer classifier algorithm parameters,using the model primitives extracted from IFC format BIM model file,deep learning of 7 types of BIM object categories is taken.Through the performance and evaluation indicators obtained in training,the results improve the classification accuracy. 展开更多
关键词 building information modeling(BIM) object classification deep learning model primitive performance
在线阅读 下载PDF
A Survey of Image Information Hiding Algorithms Based on Deep Learning 被引量:1
17
作者 Ruohan Meng Qi Cui Chengsheng Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第12期425-454,共30页
With the development of data science and technology,information security has been further concerned.In order to solve privacy problems such as personal privacy being peeped and copyright being infringed,information hi... With the development of data science and technology,information security has been further concerned.In order to solve privacy problems such as personal privacy being peeped and copyright being infringed,information hiding algorithms has been developed.Image information hiding is to make use of the redundancy of the cover image to hide secret information in it.Ensuring that the stego image cannot be distinguished from the cover image,and sending secret information to receiver through the transmission of the stego image.At present,the model based on deep learning is also widely applied to the field of information hiding.This paper makes an overall conclusion on image information hiding based on deep learning.It is divided into four parts of steganography algorithms,watermarking embedding algorithms,coverless information hiding algorithms and steganalysis algorithms based on deep learning.From these four aspects,the state-of-the-art information hiding technologies based on deep learning are illustrated and analyzed. 展开更多
关键词 STEGANOGRAPHY DEEP learning STEGANALYSIS WATERMARKING coverless information hiding.
在线阅读 下载PDF
Semantic Information Extraction from Multi-Corpora Using Deep Learning 被引量:1
18
作者 Sunil Kumar Hanumat G.Sastry +4 位作者 Venkatadri Marriboyina Hammam Alshazly Sahar Ahmed Idris Madhushi Verma Manjit Kaur 《Computers, Materials & Continua》 SCIE EI 2022年第3期5021-5038,共18页
Information extraction plays a vital role in natural language processing,to extract named entities and events from unstructured data.Due to the exponential data growth in the agricultural sector,extracting significant... Information extraction plays a vital role in natural language processing,to extract named entities and events from unstructured data.Due to the exponential data growth in the agricultural sector,extracting significant information has become a challenging task.Though existing deep learningbased techniques have been applied in smart agriculture for crop cultivation,crop disease detection,weed removal,and yield production,still it is difficult to find the semantics between extracted information due to unswerving effects of weather,soil,pest,and fertilizer data.This paper consists of two parts.An initial phase,which proposes a data preprocessing technique for removal of ambiguity in input corpora,and the second phase proposes a novel deep learning-based long short-term memory with rectification in Adam optimizer andmultilayer perceptron to find agricultural-based named entity recognition,events,and relations between them.The proposed algorithm has been trained and tested on four input corpora i.e.,agriculture,weather,soil,and pest&fertilizers.The experimental results have been compared with existing techniques and itwas observed that the proposed algorithm outperformsWeighted-SOM,LSTM+RAO,PLR-DBN,KNN,and Na飗e Bayes on standard parameters like accuracy,sensitivity,and specificity. 展开更多
关键词 AGRICULTURE deep learning information extraction WEATHER SOIL
在线阅读 下载PDF
Iterative Learning Control for Discrete-time Stochastic Systems with Quantized Information 被引量:10
19
作者 Dong Shen Yun Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第1期59-67,共9页
An iterative learning control (ILC) algorithm using quantized error information is given in this paper for both linear and nonlinear discrete-time systems with stochastic noises. A logarithmic quantizer is used to gua... An iterative learning control (ILC) algorithm using quantized error information is given in this paper for both linear and nonlinear discrete-time systems with stochastic noises. A logarithmic quantizer is used to guarantee an adaptive improvement in tracking performance. A decreasing learning gain is introduced into the algorithm to suppress the effects of stochastic noises and quantization errors. The input sequence is proved to converge strictly to the optimal input under the given index. Illustrative simulations are given to verify the theoretical analysis. © 2014 Chinese Association of Automation. 展开更多
关键词 ALGORITHMS Digital control systems Discrete time control systems Iterative methods learning algorithms Stochastic control systems Stochastic systems
在线阅读 下载PDF
Information Detection of Seismic Debris Flow by UAV High-resolution Image Based on Transfer Learning
20
作者 GUO Jiawei LI Yongshu +2 位作者 WANG Hongshu LU Heng WANG Xiaobo 《Earthquake Research in China》 CSCD 2019年第1期112-119,共8页
A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly ... A large number of debris flow disasters(called Seismic debris flows) would occur after an earthquake, which can cause a great amount of damage. UAV low-altitude remote sensing technology has become a means of quickly obtaining disaster information as it has the advantage of convenience and timeliness, but the spectral information of the image is so scarce, making it difficult to accurately detect the information of earthquake debris flow disasters. Based on the above problems, a seismic debris flow detection method based on transfer learning(TL) mechanism is proposed. On the basis of the constructed seismic debris flow disaster database, the features acquired from the training of the convolutional neural network(CNN) are transferred to the disaster information detection of the seismic debris flow. The automatic detection of earthquake debris flow disaster information is then completed, and the results of object-oriented seismic debris flow disaster information detection are compared and analyzed with the detection results supported by transfer learning. 展开更多
关键词 EARTHQUAKE DEBRIS flow UAV HIGH-RESOLUTION image Transfer learning information detection
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部