The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier...The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
This paper discusses the semidiscrete finite element method for nonlinear hyperbolic equations with nonlinear boundary condition. The superclose property is derived through interpolation instead of the nonlinear H^1 p...This paper discusses the semidiscrete finite element method for nonlinear hyperbolic equations with nonlinear boundary condition. The superclose property is derived through interpolation instead of the nonlinear H^1 projection and integral identity technique. Meanwhile, the global superconvergence is obtained based on the interpolated postprocessing techniques.展开更多
This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using...This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz\|Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H \+1\|norm error estimate are demonstrated.展开更多
The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obta...The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obtain the asymptotic stability of global solutions by means of a difference inequality.展开更多
Presents the iterative method of solving Cauchy problem with reproducing kernel for nonlinear hyperbolic equations, and the application of the computational technique of reproducing kernel space to simplify, the itera...Presents the iterative method of solving Cauchy problem with reproducing kernel for nonlinear hyperbolic equations, and the application of the computational technique of reproducing kernel space to simplify, the iterative computation and increase the convergence rate and points out that this method is still effective. Even if the initial condition is discrete.展开更多
Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model i...Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model in the time domain. Terms involving the first order spatial derivatives are differenced to O ( Δx )4accuracy utilizing a five-point formula. The nonlinear dispersion relationship proposed by Kirby and Dalrymple (1986) is used to consider the nonlinear effect. A numerical test is performed upon wave propagating over a typical shoal. The agreement between the numerical and the experimental results validates the present model. Biodistribution and applications are also summarized.展开更多
In this paper,we present the negative norm estimates for the arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)method solving nonlinear hyperbolic equations with smooth solutions.The smoothness-increasing ac...In this paper,we present the negative norm estimates for the arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)method solving nonlinear hyperbolic equations with smooth solutions.The smoothness-increasing accuracy-conserving(SIAC)filter is a post-processing technique to enhance the accuracy of the discontinuous Galerkin(DG)solutions.This work is the essential step to extend the SIAC filter to the moving mesh for nonlinear problems.By the post-processing theory,the negative norm estimates are vital to get the superconvergence error estimates of the solutions after post-processing in the L2 norm.Although the SIAC filter has been extended to nonuniform mesh,the analysis of fil-tered solutions on the nonuniform mesh is complicated.We prove superconvergence error estimates in the negative norm for the ALE-DG method on moving meshes.The main dif-ficulties of the analysis are the terms in the ALE-DG scheme brought by the grid velocity field,and the time-dependent function space.The mapping from time-dependent cells to reference cells is very crucial in the proof.The numerical results also confirm the theoreti-cal proof.展开更多
This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, ...This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, the conditions for which the solutions blow-up and die-out in the finile time are got.展开更多
In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficien...In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.展开更多
A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed...A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved nu- merically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model' s performance on prediction of wave heights around breaking point for the wave motions in surf zone.展开更多
Sufficient conditions are obtained for the oscillation of solutions of the systems of quasilinear hyperbolic differential equation with deviating arguments under nonlinear boundary condition.
New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations fo...New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is gready saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.展开更多
The following nonlinear hyperbolic equation is discussed in this paper:where A= -? + Iandx∈Rn. The model comes from the transverse deflection equation of an extensible beam. We prove that there exists a unique local ...The following nonlinear hyperbolic equation is discussed in this paper:where A= -? + Iandx∈Rn. The model comes from the transverse deflection equation of an extensible beam. We prove that there exists a unique local solution of the above equation as M depends on x.展开更多
Concerns with the nonexistence of global solutions to the initial boundary value problem for a nonlinear hyperbolic equation with material damping. Nonexitence theorems of global solutions to the above problem are pro...Concerns with the nonexistence of global solutions to the initial boundary value problem for a nonlinear hyperbolic equation with material damping. Nonexitence theorems of global solutions to the above problem are proved by the energy method, Jensen inequality and the concavity method, respectively. As applications of our main results, three examples are given.展开更多
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space var...An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.展开更多
This paper gives the suffcient conditions of blow-up of the solution of a nonlinear hyperbolic equation with the initial boundary value conditions in finite time and proves the existence and uniqueness of the local so...This paper gives the suffcient conditions of blow-up of the solution of a nonlinear hyperbolic equation with the initial boundary value conditions in finite time and proves the existence and uniqueness of the local solution of the problem.展开更多
We consider strictly hyperbolic nonlinear equations which are Lipschitz continuous in the time variable and study the local analytic regularity of the solutions with respect to the space variables.
By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soli...By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.展开更多
基金The NNSF (99200204) of Liaoning Province, China.
文摘The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘This paper discusses the semidiscrete finite element method for nonlinear hyperbolic equations with nonlinear boundary condition. The superclose property is derived through interpolation instead of the nonlinear H^1 projection and integral identity technique. Meanwhile, the global superconvergence is obtained based on the interpolated postprocessing techniques.
文摘This paper studies the finite element method for some nonlinear hyperbolic partial differential equations with memory and dampling terms.A Crank\|Nicolson approximation for this kind of equations is presented.By using the elliptic Ritz\|Volterra projection,the analysis of the error estimates for the finite element numerical solutions and the optimal H \+1\|norm error estimate are demonstrated.
基金supported by National Natural Science Foundation of China(61273016)The Natural Science Foundation of Zhejiang Province(Y6100016)The Public Welfare Technology Application Research Project of Zhejiang Province Science and Technology Department(2015C33088)
文摘The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obtain the asymptotic stability of global solutions by means of a difference inequality.
文摘Presents the iterative method of solving Cauchy problem with reproducing kernel for nonlinear hyperbolic equations, and the application of the computational technique of reproducing kernel space to simplify, the iterative computation and increase the convergence rate and points out that this method is still effective. Even if the initial condition is discrete.
基金This work is financially supported by the National Natural Science Foundation of China (50409015).
文摘Based on the hyperbolic mild-slope equations derived by Copeland (1985), a numerical model is established in unstag- gered grids. A composite 4 th-order Adam-Bashforth-Moulton (ABM) scheme is used to solve the model in the time domain. Terms involving the first order spatial derivatives are differenced to O ( Δx )4accuracy utilizing a five-point formula. The nonlinear dispersion relationship proposed by Kirby and Dalrymple (1986) is used to consider the nonlinear effect. A numerical test is performed upon wave propagating over a typical shoal. The agreement between the numerical and the experimental results validates the present model. Biodistribution and applications are also summarized.
基金the fellowship of China Postdoctoral Science Foundation,no:2020TQ0030.Y.Xu:Research supported by National Numerical Windtunnel Project NNW2019ZT4-B08+1 种基金Science Challenge Project TZZT2019-A2.3NSFC Grants 11722112,12071455.X.Li:Research supported by NSFC Grant 11801062.
文摘In this paper,we present the negative norm estimates for the arbitrary Lagrangian-Eulerian discontinuous Galerkin(ALE-DG)method solving nonlinear hyperbolic equations with smooth solutions.The smoothness-increasing accuracy-conserving(SIAC)filter is a post-processing technique to enhance the accuracy of the discontinuous Galerkin(DG)solutions.This work is the essential step to extend the SIAC filter to the moving mesh for nonlinear problems.By the post-processing theory,the negative norm estimates are vital to get the superconvergence error estimates of the solutions after post-processing in the L2 norm.Although the SIAC filter has been extended to nonuniform mesh,the analysis of fil-tered solutions on the nonuniform mesh is complicated.We prove superconvergence error estimates in the negative norm for the ALE-DG method on moving meshes.The main dif-ficulties of the analysis are the terms in the ALE-DG scheme brought by the grid velocity field,and the time-dependent function space.The mapping from time-dependent cells to reference cells is very crucial in the proof.The numerical results also confirm the theoreti-cal proof.
文摘This paper considers the initial boundary value problems with three types of the boundary conditions for nonlinear pseudo-hyperbolic equations of generalized nerve conduction type, using foe eigenfunction method, the conditions for which the solutions blow-up and die-out in the finile time are got.
文摘In this paper, the existence and uniqueness of the local generalized solution of the initial boundary value problem for a nonlinear hyperbolic equation are proved by the contraction mapping principle and the sufficient conditions of blow_up of the solution in finite time are given.
基金the National Natural Science Foundation of China (Grant Nos .50479053 and10672034)the Programfor Changjiang Scholars and Innovative Research Teamin Universitythe foundation for doctoral degree education of the Education Ministry of China
文摘A new form of hyperbolic mild slope equations is derived with the inclusion of the amphtude dispersion of nonlinear waves. The effects of including the amplitude dispersion effect on the wave propagation are discussed. Wave breaking mechanism is incorporated into the present model to apply the new equations to surf zone. The equations are solved nu- merically for regular wave propagation over a shoal and in surf zone, and a comparison is made against measurements. It is found that the inclusion of the amplitude dispersion can also improve model' s performance on prediction of wave heights around breaking point for the wave motions in surf zone.
基金This work is supported in part by NNSF of China(10571126)and in part by Program for New Century Excellent Talents in University.
文摘Sufficient conditions are obtained for the oscillation of solutions of the systems of quasilinear hyperbolic differential equation with deviating arguments under nonlinear boundary condition.
基金supported by the National Natural Science Foundation of China(Grant Nos.50479053and10672034)the Program for Changjiang Scholars and Innovative Research Teamin University,and thefoundationfordoctoral degree education of the Education Ministry of China
文摘New hyperbolic mild slope equations for random waves are developed with the inclusion of amplitude dispersion. The frequency perturbation around the peak frequency of random waves is adopted to extend the equations for regular waves to random waves. The nonlinear effect of amplitude dispersion is incorporated approximately into the model by only considering the nonlinear effect on the carrier waves of random waves, which is done by introducing a representative wave amplitude for the carrier waves. The computation time is gready saved by the introduction of the representative wave amplitude. The extension of the present model to breaking waves is also considered in order to apply the new equations to surf zone. The model is validated for random waves propagate over a shoal and in surf zone against measurements.
文摘The following nonlinear hyperbolic equation is discussed in this paper:where A= -? + Iandx∈Rn. The model comes from the transverse deflection equation of an extensible beam. We prove that there exists a unique local solution of the above equation as M depends on x.
基金Project supported by the National Natural Science Foundation of China (Nos. 10371073 and 10572156) the Natural Science Foundation of Henan Province of China (No.0611050500)
文摘Concerns with the nonexistence of global solutions to the initial boundary value problem for a nonlinear hyperbolic equation with material damping. Nonexitence theorems of global solutions to the above problem are proved by the energy method, Jensen inequality and the concavity method, respectively. As applications of our main results, three examples are given.
文摘An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.
基金Supported by the National Natural Science Foundation of China(10671182) Supported by the Excellent Youth Teachers Foundation of High College of Henan Province(2006110016)
文摘This paper gives the suffcient conditions of blow-up of the solution of a nonlinear hyperbolic equation with the initial boundary value conditions in finite time and proves the existence and uniqueness of the local solution of the problem.
文摘We consider strictly hyperbolic nonlinear equations which are Lipschitz continuous in the time variable and study the local analytic regularity of the solutions with respect to the space variables.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Scienoe Foundation of Liaocheng University
文摘By using the extended hyperbolic function method, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution, bright and dark soliton solution, alternating phase bright soliton solution, alternating phase dark soliton solution, and alternating phase bright and dark soliton solution, if a special relation is bound on the coefficients of the equation.