期刊文献+
共找到272,503篇文章
< 1 2 250 >
每页显示 20 50 100
STRONGLY CONVERGENT INERTIAL FORWARD-BACKWARD-FORWARD ALGORITHM WITHOUT ON-LINE RULE FOR VARIATIONAL INEQUALITIES
1
作者 姚永红 Abubakar ADAMU Yekini SHEHU 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期551-566,共16页
This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inerti... This paper studies a strongly convergent inertial forward-backward-forward algorithm for the variational inequality problem in Hilbert spaces.In our convergence analysis,we do not assume the on-line rule of the inertial parameters and the iterates,which have been assumed by several authors whenever a strongly convergent algorithm with an inertial extrapolation step is proposed for a variational inequality problem.Consequently,our proof arguments are different from what is obtainable in the relevant literature.Finally,we give numerical tests to confirm the theoretical analysis and show that our proposed algorithm is superior to related ones in the literature. 展开更多
关键词 forward-backward-forward algorithm inertial extrapolation variational inequality on-line rule
在线阅读 下载PDF
The Complexity and On-Line Algorithm for Automated Storage and Retrieval System with Stacker Cranes on One Rail 被引量:3
2
作者 GAO Qiang LU Xiwen 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第5期1302-1319,共18页
This paper considers an on-line scheduling and routing problem concerning the automated storage and retrieval system from tobacco industry. In this problem, stacker cranes run on one common rail between two racks. Mul... This paper considers an on-line scheduling and routing problem concerning the automated storage and retrieval system from tobacco industry. In this problem, stacker cranes run on one common rail between two racks. Multiple input/output-points are located at the bottom of the racks. The stacker cranes transport bins between the input/output-points and cells on the racks to complete requests generated over time. Each request should be accomplished within its response time. The objective is to minimize the time by which all the generated requests are completed. Under a given physical layout, the authors study the complexity of the problem and design on-line algorithms for both one-stacker-crane model and two-stacker-crane model. The algorithms axe validated by instances and numerical simulations. 展开更多
关键词 Automated storage and retrieval system NPohard on-line algorithm ROUTING scheduling.
原文传递
FREQUENCY-DOMAIN IMPLEMENTATION OF FILTERED-X ALGORITHMS WITH ON-LINE SYSTEM IDENTIFICATION FOR VIBRATION CONTROL
3
作者 陈卫东 顾仲权 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期99-103,共5页
This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain ... This paper describes the implementation of frequency-domain least mean squares (LMS) and Filtered-X algorithms and compares the performance of the frequencydomain adaptive control algorithm to a comparable timedomain controller. When the frequency-domain LMS step size is allowed to vary as a function of frequency,the frequency-domain algorithm exhibits a better vibration reduction than the time-domain algorithm for the weaker frequencies in the energy spectrum. 展开更多
关键词 vibration reduction feedforward control adaptive filters vibration control adaptive algorithms
在线阅读 下载PDF
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms 被引量:6
4
作者 杨彪 梁贵安 +5 位作者 彭金辉 郭胜惠 李玮 张世敏 李英伟 白松 《Journal of Central South University》 SCIE EI CAS 2013年第10期2685-2692,共8页
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi... The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design. 展开更多
关键词 industrial microwave DRYING ROTARY device SELF-ADAPTIVE PID controller genetic algorithm on-line tuning SELENIUM-ENRICHED SLAG
在线阅读 下载PDF
On-line least squares support vector machine algorithm in gas prediction 被引量:21
5
作者 ZHAO Xiao-hu WANG Gang ZHAO Ke-ke TAN De-jian 《Mining Science and Technology》 EI CAS 2009年第2期194-198,共5页
Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squ... Traditional coal mine safety prediction methods are off-line and do not have dynamic prediction functions.The Support Vector Machine(SVM) is a new machine learning algorithm that has excellent properties.The least squares support vector machine(LS-SVM) algorithm is an improved algorithm of SVM.But the common LS-SVM algorithm,used directly in safety predictions,has some problems.We have first studied gas prediction problems and the basic theory of LS-SVM.Given these problems,we have investigated the affect of the time factor about safety prediction and present an on-line prediction algorithm,based on LS-SVM.Finally,given our observed data,we used the on-line algorithm to predict gas emissions and used other related algorithm to compare its performance.The simulation results have verified the validity of the new algorithm. 展开更多
关键词 LS-SVM GAS on-line learning PREDICTION
在线阅读 下载PDF
A New Algorithm for On-Line Handwriting Signature Verification Based on Evolutionary Computation 被引量:7
6
作者 ZHENG Jianbin ZHU Guangxi 《Wuhan University Journal of Natural Sciences》 CAS 2006年第3期596-600,共5页
The paper proposes an on-line signature verification algorithm, through which test sample and template signatures can be optimizedly matched, based on evolutionary computation (EC). Firstly, the similarity of signat... The paper proposes an on-line signature verification algorithm, through which test sample and template signatures can be optimizedly matched, based on evolutionary computation (EC). Firstly, the similarity of signature curve segment is defined, and shift and scale transforms are also introduced due to the randoness of on-line signature. Secondly, this paper puts forward signature verification matching algorithm after establishment of the mathematical model. Thirdly, the concrete realization of the algorithm based on EC is discussed as well. In addition, the influence of shift and scale on the matching result is fully considered in the algorithm. Finally, a computation example is given, and the matching results between the test sample curve and the template signature curve are analyzed in detail, The preliminary experiments reveal that the type of signature verification problem can be solved by EC. 展开更多
关键词 on-line signature signature verification evolutionary computation
在线阅读 下载PDF
Algorithms for semi on-line multiprocessor scheduling problems 被引量:8
7
作者 杨启帆 谈之奕 +1 位作者 姚恩瑜 何勇 《Journal of Zhejiang University Science》 CSCD 2002年第1期60-64,共5页
In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but someh... In the classical multiprocessor scheduling problems, it is assumed that the problems are considered in off\|line or on\|line environment. But in practice, problems are often not really off\|line or on\|line but somehow in between. This means that, with respect to the on\|line problem, some further information about the tasks is available, which allows the improvement of the performance of the best possible algorithms. Problems of this class are called semi on\|line ones. The authors studied two semi on\|line multiprocessor scheduling problems, in which, the total processing time of all tasks is known in advance, or all processing times lie in a given interval. They proposed approximation algorithms for minimizing the makespan and analyzed their performance guarantee. The algorithms improve the known results for 3 or more processor cases in the literature. 展开更多
关键词 analysis of algorithm on\|line scheduling worst\|case ratio
在线阅读 下载PDF
Prediction of photovoltaic power output based on different non-linear autoregressive artificial neural network algorithms 被引量:3
8
作者 Adriano Pamain P.V.Kanaka Rao Frank Nicodem Tilya 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期226-235,共10页
Prediction of power output plays a vital role in the installation and operation of photovoltaic modules.In this paper,two photovoltaic module technologies,amorphous silicon and copper indium gallium selenide installed... Prediction of power output plays a vital role in the installation and operation of photovoltaic modules.In this paper,two photovoltaic module technologies,amorphous silicon and copper indium gallium selenide installed outdoors on the rooftop of the University of Dodoma,located at 6.5738°S and 36.2631°E in Tanzania,were used to record the power output during the winter season.The average data of ambient temperature,module temperature,solar irradiance,relative humidity,and wind speed recorded is used to predict the power output using a non-linear autoregressive artificial neural network.We consider the Levenberg-Marquardt optimization,Bayesian regularization,resilient propagation,and scaled conjugate gradient algorithms to understand their abilities in training,testing and validating the data.A comparison with reference to the performance indices:coefficient of determination,root mean square error,mean absolute percentage error,and mean absolute bias error is drawn for both modules.According to the findings of our investigation,the predicted results are in good agreement with the experimental results.All the algorithms performed better,and the predicted power out of both modules using the Bayesian regularization algorithm is observed to exhibit good processing capabilities compared to the other three algorithms that are evident from the measured performance indices. 展开更多
关键词 PHOTOVOLTAIC Artificial neural network Training algorithms Ambient parameters Power output
在线阅读 下载PDF
Hierarchical On-line Scheduling of Multiproduct Batch Plants with a Combined Approach of Mathematical Programming and Genetic Algorithm 被引量:1
9
作者 陈理 王克峰 +1 位作者 徐霄羽 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第1期78-84,共7页
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integ... In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants. 展开更多
关键词 online scheduling multiproduct batch plant mixed integer nonlinear programming mathematical programming genetic algorithm
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
10
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
11
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
12
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
On-line Scheduling Algorithm for Penicillin Fed-batch Fermentation
13
作者 薛耀锋 袁景淇 《Journal of Donghua University(English Edition)》 EI CAS 2005年第5期43-46,共4页
An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categ... An on-line scheduling algorithm to maximize gross profit of penicillin fed-batch fermentation is proposed. According to the on-line classification method, fed-batch fermentation batches are classified into three categories. Using the scheduling strategy, the optimal termination sequence of batches is obtained. Pseudo on-line simulations for testing the proposed algorithm with the data from industrial scale penicillin fermentation are carried out. 展开更多
关键词 fed-batch process on-line scheduling penicillin fermentation
在线阅读 下载PDF
NON-LINEAR DYNAMIC MODEL RETRIEVAL OF SUBTROPICAL HIGH BASED ON EMPIRICAL ORTHOGONAL FUNCTION AND GENETIC ALGORITHM
14
作者 张韧 洪梅 +4 位作者 孙照渤 牛生杰 朱伟军 闵锦忠 万齐林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1645-1653,共9页
Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirica... Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high. 展开更多
关键词 genetic algorithm empirical orthogonal function non-linear model retrieval subtropical high
在线阅读 下载PDF
Better Algorithm for Order On-Line Scheduling on Uniform Machines
15
作者 Rongheng Li Yunxia Zhou 《International Journal of Intelligence Science》 2019年第2期59-65,共7页
In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best exis... In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best existing result of 12. 展开更多
关键词 Online SCHEDULING UNIFORM Machine COMPETITIVE RATIO LS algorithm
在线阅读 下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
16
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling MAKESPAN iterated greedy algorithm memory mechanism cooperative reinforcement learning
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network
17
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
An Innovative Genetic Algorithms-Based Inexact Non-Linear Programming Problem Solving Method
18
作者 Weihua Jin Zhiying Hu Christine Chan 《Journal of Environmental Protection》 2017年第3期231-249,共19页
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor... In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty. 展开更多
关键词 GENETIC algorithms INEXACT Non-lineAR PROGRAMMING (INLP) ECONOMY of Scale Numeric Optimization Solid Waste Management
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
19
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
A Review of On-Line Machine Scheduling:Algorithms and Competitiveness 被引量:11
20
作者 陈礴 《数学理论与应用》 1999年第3期1-15,共15页
在过去的十年里,在线算法的研究吸引了广泛的兴趣.本文对在排序和时间表问题中的各种有效的在线算法以及它们的竞争度作一综述.
关键词 排序 时间表 在线算法 竞争度
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部