在两种水分供给(干旱胁迫和适宜水分,土壤含水量分别为田间持水量的30%~40%和70%~80%)下,研究了耐旱树种元宝枫(Acer truncatum)和中生树种女贞(Ligustrum lucidum)木质部栓塞(以导水率(Percentage loss of hydraulic conductivity,P...在两种水分供给(干旱胁迫和适宜水分,土壤含水量分别为田间持水量的30%~40%和70%~80%)下,研究了耐旱树种元宝枫(Acer truncatum)和中生树种女贞(Ligustrum lucidum)木质部栓塞(以导水率(Percentage loss of hydraulic conductivity,PLC)损失程度衡量)对P素添加的响应。结果发现,两个树种PLC的日变化均呈现出先上升后降低的规律,表明木质部栓塞的形成与恢复是植物体的一种平常事件;除适宜水分条件的女贞外,P素可以显著提高元宝枫和遭受干旱胁迫时女贞的PLC;两种水分条件下,干旱胁迫时元宝枫木质部栓塞明显高于适宜水分供给时。女贞的PLC在两种水分状况下无显著差异;树种间,干旱胁迫促进了元宝枫木质部的栓塞形成,明显高于同等水分条件下的女贞。该研究结果证实了"木质部限流耐旱假设"。展开更多
Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is f...Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is far from practical application.Addressing interfacial stability issues encountered during cycling and employing interfacial optimization strategies can promote the development of safe and eco-friendly AZMBs.By introducingγ-valerolactone(GVL),which disrupts the original hydrogen bonding network of water,the electrochemical window of electrolyte is expanded,and the reactivity of water is significantly reduced.Additionally,the incorporation of GVL in Zn ion solvation alters the deposition pattern on the Zn anode surface,resulting in improved cyclic performance.The cells demonstrated excellent performance,maintaining stable over 400 h at 5 mA/cm^(2)-5 mA·h/cm^(2),and nearly 300 h in Zn||Zn symmetric cell at 80%depth of discharge(DOD).The full cells matched with NH_(4)V_(4)O_(10) could cycle over 200 cycles under the condition of high areal capacity(7 mA·h/cm^(2)),an N/P ratio of 1.99 and an E/C ratio of 9.3μL/(mA·h).展开更多
文摘在两种水分供给(干旱胁迫和适宜水分,土壤含水量分别为田间持水量的30%~40%和70%~80%)下,研究了耐旱树种元宝枫(Acer truncatum)和中生树种女贞(Ligustrum lucidum)木质部栓塞(以导水率(Percentage loss of hydraulic conductivity,PLC)损失程度衡量)对P素添加的响应。结果发现,两个树种PLC的日变化均呈现出先上升后降低的规律,表明木质部栓塞的形成与恢复是植物体的一种平常事件;除适宜水分条件的女贞外,P素可以显著提高元宝枫和遭受干旱胁迫时女贞的PLC;两种水分条件下,干旱胁迫时元宝枫木质部栓塞明显高于适宜水分供给时。女贞的PLC在两种水分状况下无显著差异;树种间,干旱胁迫促进了元宝枫木质部的栓塞形成,明显高于同等水分条件下的女贞。该研究结果证实了"木质部限流耐旱假设"。
基金Project(2023YFC2908305)supported by the National Key R&D Program of ChinaProjects(52072411,52301273)supported by the National Natural Science Foundation of China+1 种基金Project(2023CXQD038)supported by the Central South University Innovation-Driven Research Program,ChinaProject(S202310533413)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Aqueous zinc metal batteries(AZMBs)have garnered widespread attention due to their low cost and high safety.However,current researches are still primarily focused on reversible cycling at low areal capacity,which is far from practical application.Addressing interfacial stability issues encountered during cycling and employing interfacial optimization strategies can promote the development of safe and eco-friendly AZMBs.By introducingγ-valerolactone(GVL),which disrupts the original hydrogen bonding network of water,the electrochemical window of electrolyte is expanded,and the reactivity of water is significantly reduced.Additionally,the incorporation of GVL in Zn ion solvation alters the deposition pattern on the Zn anode surface,resulting in improved cyclic performance.The cells demonstrated excellent performance,maintaining stable over 400 h at 5 mA/cm^(2)-5 mA·h/cm^(2),and nearly 300 h in Zn||Zn symmetric cell at 80%depth of discharge(DOD).The full cells matched with NH_(4)V_(4)O_(10) could cycle over 200 cycles under the condition of high areal capacity(7 mA·h/cm^(2)),an N/P ratio of 1.99 and an E/C ratio of 9.3μL/(mA·h).