期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS 被引量:1
1
作者 周勇 尤进红 王晓婧 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1113-1127,共15页
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop... This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 展开更多
关键词 partially linear regression model varying-coefficient profile leastsquares error variance strong convergence rate law of iterated logarithm
在线阅读 下载PDF
Efficient Shrinkage Estimation about the Partially Linear Varying Coefficient Model with Random Effect for Longitudinal Data
2
作者 Wanbin Li 《Open Journal of Statistics》 2016年第5期862-872,共12页
In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c... In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure. 展开更多
关键词 partially linear varying coefficient model Mixed Effect Penalized Estimating Equation
在线阅读 下载PDF
Quasi Maximum Likelihood for MESS Varying Coefficient Panel Data Models with Fixed Effects
3
作者 Yan Liu 《Journal of Economic Science Research》 2021年第3期60-64,共5页
The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demog­raphy,epidemiology,regional economics,and psychology.With the deepening of... The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demog­raphy,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maxi­mum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for ma­trix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymp­totic normality to make a further supplement for the theoretical study of MESS model. 展开更多
关键词 Fixed effects MESS panel data varying coefficient models Quasi maximum likelihood
在线阅读 下载PDF
Generalized Likelihood Ratio Tests for Varying-Coefficient Models with Censored Data
4
作者 Rong Jiang Wei-Min Qian 《Open Journal of Statistics》 2011年第1期19-23,共5页
In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null d... In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and real data examples are given to illustrate the performance of the testing approach. 展开更多
关键词 varying coefficient model GENERALIZED LIKELIHOOD RATIO Test Local linear Method Wilks Phenomenon CENSORING
在线阅读 下载PDF
TESTING SERIAL CORRELATION IN SEMIPARAMETRIC VARYING COEFFICIENT PARTIALLY LINEAR ERRORS-IN-VARIABLES MODEL 被引量:5
5
作者 Xuemei HU Feng LIU Zhizhong WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期483-494,共12页
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ... The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power. 展开更多
关键词 Asymptotic normality local linear regression measurement error modified profile leastsquares estimation partial linear model testing serial correlation varying coefficient model.
原文传递
Variable Selection for Semiparametric Varying-Coefficient Partially Linear Models with Missing Response at Random 被引量:9
6
作者 Pei Xin ZHAO Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第11期2205-2216,共12页
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo... In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 Semiparametric varying-coefficient partially linear model variable selection SCAD missing data
原文传递
Penalized profile least squares-based statistical inference for varying coefficient partially linear errors-in-variables models 被引量:2
7
作者 Guo-liang Fan Han-ying Liang Li-xing Zhu 《Science China Mathematics》 SCIE CSCD 2018年第9期1677-1694,共18页
The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some sp... The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic. 展开更多
关键词 diverging number of parameters varying coefficient partially linear model penalized likelihood SCAD variable selection
原文传递
Variable Selection for Generalized Varying Coefficient Partially Linear Models with Diverging Number of Parameters 被引量:1
8
作者 Zheng-yan Lin Yu-ze Yuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期237-246,共10页
Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and... Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and selection of significant variables for the parametric portion. In this paper, we consider a variable selection procedure by combining basis function approximation with SCAD penalty. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of tuning parameters, we establish the consistency and sparseness of this procedure. 展开更多
关键词 generalized linear model varying coefficient high dimensionality SCAD basis function.
原文传递
Sieve M-estimation for semiparametric varying-coefficient partially linear regression model 被引量:1
9
作者 HU Tao 1,2 & CUI HengJian 1,2 1 School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing 100875,China 2 School of Mathematical Sciences,Capital Normal University,Beijing 100048,China 《Science China Mathematics》 SCIE 2010年第8期1995-2010,共16页
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear ... This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ(·).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method. 展开更多
关键词 partly linear model varying-coefficient robustness optimal convergence rate asymptotic NORMALITY
原文传递
Asymptotic Normality of Estimators in Partially Linear Varying Coefficient Models
10
作者 魏传华 吴喜之 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期877-885,共9页
Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the para... Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the parametric and nonparametric components by Profile least-squares procedure which is based on local linear smoothing. The resulting estimators are shown to be asymptotically normal with heteroscedastic error. 展开更多
关键词 asymptotic normality HETEROSCEDASTICITY profile least-squares approach partially linear varying coeffiient model local linear smoothing.
在线阅读 下载PDF
Efficient Estimation of a Varying-coefficient Partially Linear Binary Regression Model
11
作者 TaoHU Heng Jian CUI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第11期2179-2190,共12页
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary... This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method. 展开更多
关键词 partially linear model varying-coefficient binary regression asymptotically efficient estimator sieve MLE
原文传递
Testing Serial Correlation in Semiparametric Varying-Coefficient Partially Linear EV Models
12
作者 Xue-mei Hu Zhi-zhong Wang Feng Liu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第1期99-116,共18页
This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,... This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,η^T)^T] =0, Cov[(ε,η^T)^T] = σ^2Ip+1. The estimators of interested regression parameters /3 , and the model error variance σ2, as well as the nonparametric components α(T), are constructed. Under some regular conditions, we show that the estimators of the unknown vector β and the unknown parameter σ2 are strongly consistent and asymptotically normal and that the estimator of α(T) achieves the optimal strong convergence rate of the usual nonparametric regression. Based on these estimators and asymptotic properties, we propose the VN,p test statistic and empirical log-likelihood ratio statistic for testing serial correlation in the model. The proposed statistics are shown to have asymptotic normal or chi-square distributions under the null hypothesis of no serial correlation. Some simulation studies are conducted to illustrate the finite sample performance of the proposed tests. 展开更多
关键词 varying-coefficient model partial linear EV model the generalized least squares estimation serial correlation empirical likelihood
原文传递
Inference on Varying-Coefficient Partially Linear Regression Model
13
作者 Jing-yan FENG Ri-quan ZHANG Yi-qiang LU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第1期139-156,共18页
The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the l... The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically. 展开更多
关键词 asymptotic normality varying-coefficient partially linear regression model generalized likelihoodratio test Wilks phenomenon xi-distribution.
原文传递
Partially Time-varying Coefficient Linear Rate Model for the Recurrent Event Data
14
作者 Xiao-lin CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第3期681-698,共18页
In [13], Schaubel et al. proposed a semiparametric partially linear rate model for the statistical analysis of recurrent event data. But they only considered the model with time-independent covariate effects. In this ... In [13], Schaubel et al. proposed a semiparametric partially linear rate model for the statistical analysis of recurrent event data. But they only considered the model with time-independent covariate effects. In this paper, rate function of the recurrent event is modeled by a semipaxametric partially linear function which can include the time-varying effects. We propose the method of generalized estimating equations to make inferences about both the time-varying effects and time-independent effects. The large sample properties are established, while extensive simulation studies are carried out to examine the proposed procedures. At last, we apply the procedures to the well-known bladder cancer study. 展开更多
关键词 partially linear rate model empirical process recurrent event time-varying effects.
原文传递
Efficient Estimation for Semiparametric Varying-Coefficient Partially Linear Regression Models with Current Status Data
15
作者 Tao Hu Heng-jian Cui Xing-wei Tong 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第2期195-204,共10页
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalizatio... This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach. 展开更多
关键词 Partly linear model varying-coefficient current status data asymptotically efficient estimator sieve MLE
原文传递
空间自相关性异质特征的局部极大似然估计及在手足口病防护中的应用
16
作者 杨晓兰 张辉国 胡锡健 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期179-192,共14页
空间自回归模型广泛用于空间数据的相关性分析,它将空间自回归系数设定为全局常数,对空间自相关性的同质特征进行建模,但是无法分析研究区域内局部异质的空间自相关特征。本文研究一类异质性空间自回归变系数模型,将模型中的空间自相关... 空间自回归模型广泛用于空间数据的相关性分析,它将空间自回归系数设定为全局常数,对空间自相关性的同质特征进行建模,但是无法分析研究区域内局部异质的空间自相关特征。本文研究一类异质性空间自回归变系数模型,将模型中的空间自相关回归系数设为随地理位置发生变化的变系数函数,实现同时对空间自相关性的局部异质特征和非平稳回归关系建模,提出异质性空间自回归变系数模型的局部常数极大似然和局部线性极大似然估计方法。进行数值模拟,结果表明:局部线性极大似然估计和局部常数极大似然估计方法在有限样本下具有一致性和有效性,本文所提出的模型和估计方法具有良好表现。利用所研究的模型和提出的估计方法对2018年我国手足口病发病率与影响因素进行分析,发现各省(自治区、直辖市)的局部空间自相关性呈现西部偏高,中部和东部偏低的趋势,存在一定差异性,各影响因素对手足口病发病率的影响程度也随空间位置的变化而有所不同。 展开更多
关键词 异质性空间自回归变系数模型 空间自相关异质性 局部常数极大似然 局部线性极大似然 手足口病
在线阅读 下载PDF
部分线性变系数分位数模型的贝叶斯P-样条估计
17
作者 杨飘 黄介武 《智能计算机与应用》 2025年第1期88-94,共7页
部分线性变系数模型是一类重要的半参数回归模型,针对该模型的参数估计问题,本文利用贝叶斯P-样条方法近似非参数部分的未知光滑函数,进而利用非对称拉普拉斯分布实现贝叶斯分位数回归,推导出所有未知参数的条件后验分布,通过Gibbs抽样... 部分线性变系数模型是一类重要的半参数回归模型,针对该模型的参数估计问题,本文利用贝叶斯P-样条方法近似非参数部分的未知光滑函数,进而利用非对称拉普拉斯分布实现贝叶斯分位数回归,推导出所有未知参数的条件后验分布,通过Gibbs抽样和Metropolis-Hastings算法获得参数的估计值。通过数值模拟对贝叶斯P-样条方法与B-样条方法的估计效果进行比较分析,结果显示在均方误差和标准差准则下,贝叶斯P-样条方法在不同分位点上的估计效果更优。 展开更多
关键词 部分线性变系数模型 贝叶斯P-样条 B-样条 GIBBS抽样 均方误差
在线阅读 下载PDF
Empirical Likelihood Test for Regression Coefficients in High Dimensional Partially Linear Models 被引量:1
18
作者 LIU Yan REN Mingyang ZHANG Sanguo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第3期1135-1155,共21页
This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly express... This paper considers tests for regression coefficients in high dimensional partially linear Models.The authors first use the B-spline method to estimate the unknown smooth function so that it could be linearly expressed.Then,the authors propose an empirical likelihood method to test regression coefficients.The authors derive the asymptotic chi-squared distribution with two degrees of freedom of the proposed test statistics under the null hypothesis.In addition,the method is extended to test with nuisance parameters.Simulations show that the proposed method have a good performance in control of type-I error rate and power.The proposed method is also employed to analyze a data of Skin Cutaneous Melanoma(SKCM). 展开更多
关键词 Empirical likelihood test high dimensional analysis partially linear models regression coefficients
原文传递
Influence Diagnostics in Partially Varying-Coefficient Models
19
作者 Chun-xia Zhang Chang-lin Mei Jiang-she Zhang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第4期619-628,共10页
When a real-world data set is fitted to a specific type of models, it is often encountered that one or a set of observations have undue influence on the model fitting, which may lead to misleading conclusions. Therefo... When a real-world data set is fitted to a specific type of models, it is often encountered that one or a set of observations have undue influence on the model fitting, which may lead to misleading conclusions. Therefore, it is necessary for data analysts to identify these influential observations and assess their impact on various aspects of model fitting. In this paper, one type of modified Cook's distances is defined to gauge the influence of one or a set observations on the estimate of the constant coefficient part in partially varying- coefficient models, and the Cook's distances are expressed as functions of the corresponding residuals and leverages. Meanwhile, a bootstrap procedure is suggested to derive the reference values for the proposed Cook's distances. Some simulations are conducted, and a real-world data set is further analyzed to examine the performance of the proposed method. The experimental results are satisfactory. 展开更多
关键词 partially varying-coefficient model influential observation Cook's distance cross-validation
原文传递
Shrinkage Estimation of Semiparametric Model with Missing Responses for Cluster Data
20
作者 Mingxing Zhang Jiannan Qiao +1 位作者 Huawei Yang Zixin Liu 《Open Journal of Statistics》 2015年第7期768-776,共9页
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is... This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively. 展开更多
关键词 SEMIPARAMETRIC partially linear varying-coefficient model MISSING RESPONSES CLUSTER DATA Group Lasso
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部