The particle swarm optimization (PSO) algorithm is introduced to deal with some open anti-windup problems, i.e., determining the initial condition when applying the iterative algorithm to enlarge the estimate of the d...The particle swarm optimization (PSO) algorithm is introduced to deal with some open anti-windup problems, i.e., determining the initial condition when applying the iterative algorithm to enlarge the estimate of the domain of attraction, determining the design point in the delayed anti-windup scheme, and determining the design point and the weighting factors in the multi-stage anti-windup scheme. Therefore, the corresponding PSO-based algorithms are proposed. Unlike the traditional methods in which the free design parameters can only be selected by trial and error with the available computational results, the PSO-based algorithms provide a systematic way to determine these parameters. In addition, the algorithms are easy to be implemented and are very likely to find the desirable parameters that further improve the anti-windup closed-loop performances. Simulation results are presented to validate the effectiveness and advantages of the proposed method.展开更多
This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at eve...This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method.展开更多
文摘The particle swarm optimization (PSO) algorithm is introduced to deal with some open anti-windup problems, i.e., determining the initial condition when applying the iterative algorithm to enlarge the estimate of the domain of attraction, determining the design point in the delayed anti-windup scheme, and determining the design point and the weighting factors in the multi-stage anti-windup scheme. Therefore, the corresponding PSO-based algorithms are proposed. Unlike the traditional methods in which the free design parameters can only be selected by trial and error with the available computational results, the PSO-based algorithms provide a systematic way to determine these parameters. In addition, the algorithms are easy to be implemented and are very likely to find the desirable parameters that further improve the anti-windup closed-loop performances. Simulation results are presented to validate the effectiveness and advantages of the proposed method.
文摘This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method.