期刊文献+
共找到762,893篇文章
< 1 2 250 >
每页显示 20 50 100
Implementation of a particle-in-cell method for the energy solver in 3D spherical geodynamic modeling
1
作者 Hao Dong ZeBin Cao +4 位作者 LiJun Liu YanChong Li SanZhong Li LiMing Dai XinYu Li 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期549-563,共15页
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i... The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms. 展开更多
关键词 numerical oscillation overshooting and undershooting particle-in-cell method three-dimensional spherical geodynamic modeling energy solver finite element method
在线阅读 下载PDF
Affine particle-in-cell method for two-phase liquid simulation
2
作者 Luan LYU Wei CAO +1 位作者 Enhua WU Zhixin YANG 《Virtual Reality & Intelligent Hardware》 2021年第2期105-117,共13页
Background The interaction of gas and liquid can produce many interesting phenomena,such as bubbles rising from the bottom of the liquid.The simulation of two-phase fluids is a challenging topic in computer graphics.T... Background The interaction of gas and liquid can produce many interesting phenomena,such as bubbles rising from the bottom of the liquid.The simulation of two-phase fluids is a challenging topic in computer graphics.To animate the interaction of a gas and liquid,MultiFLIP samples the two types of particles,and a Euler grid is used to track the interface of the liquid and gas.However,MultiFLIP uses the fluid implicit particle(FLIP)method to interpolate the velocities of particles into the Euler grid,which suffer from additional noise and instability.Methods To solve the problem caused by fluid implicit particles(FLIP),we present a novel velocity transport technique for two individual particles based on the affine particle-in-cell(APIC)method.First,we design a weighed coupling method for interpolating the velocities of liquid and gas particles to the Euler grid such that we can apply the APIC method to the simulation of a two-phase fluid.Second,we introduce a narrowband method to our system because MultiFLIP is a time-consuming approach owing to the large number of particles.Results Experiments show that our method is well integrated with the APIC method and provides a visually credible two-phase fluid animation.Conclusions The proposed method can successfully handle the simulation of a two phase fluid. 展开更多
关键词 Fluid simulation Two-Phase flow Affine particle-in-cell method
在线阅读 下载PDF
Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems
3
作者 Jianyuan XIAO Hong QIN Jian LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第11期1-21,共21页
Recent development of structure-preserving geometric particle-in-cell (PIC) algorithms for Vlasov-Maxwell systems is summarized. With the arrival of 100 petaflop and exaflop computing power, it is now possible to ca... Recent development of structure-preserving geometric particle-in-cell (PIC) algorithms for Vlasov-Maxwell systems is summarized. With the arrival of 100 petaflop and exaflop computing power, it is now possible to carry out direct simulations of multi-scale plasma dynamics based on first-principles. However, standard algorithms currently adopted by the plasma physics community do not possess the long-term accuracy and fidelity required for these large-scale simulations. This is because conventional simulation algorithms are based on numerically solving the underpinning differential (or integro-differential) equations, and the algorithms used in general do not preserve the geometric and physical structures of the systems, such as the local energy-momentum conservation law, the symplectic structure, and the gauge symmetry. As a consequence, numerical errors accumulate coherently with time and long-term simulation results are not reliable. To overcome this difficulty and to harness the power of exascale computers, a new generation of structure-preserving geometric PIC algorithms have been developed. This new generation of algorithms utilizes modem mathematical techniques, such as discrete manifolds, interpolating differential forms, and non-canonical symplectic integrators, to ensure gauge symmetry, space-time symmetry and the conservation of charge, energy-momentum, and the symplectic structure. These highly desired properties are difficult to achieve using the conventional PIC algorithms. In addition to summarizing the recent development and demonstrating practical implementations, several new results are also presented, including a structure-preserving geometric relativistic PIC algorithm, the proof of the correspondence between discrete gauge symmetry and discrete charge conservation law, and a reformulation of the explicit non-canonical symplectic algorithm for the discrete Poisson bracket using the variational approach. Numerical examples are given to verify the advantages of the structure- preserving geometric PIC algorithms in comparison with the conventional PIC methods. 展开更多
关键词 particle-in-cell structure-preserving geometric algorithms discrete Poisson bracket charge conservation gauge symmetry
在线阅读 下载PDF
Particle-in-cell simulations of EUV-induced hydrogen plasma in the vicinity of a reflective mirror
4
作者 张宇强 余新刚 叶宗标 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期95-103,共9页
Particle-In-Cell(PIC)simulations were performed in this work to study the dynamics of the EUVinduced hydrogen plasma.The Monte-Carlo Collision(MCC)model was employed to deal with the collisions between charged particl... Particle-In-Cell(PIC)simulations were performed in this work to study the dynamics of the EUVinduced hydrogen plasma.The Monte-Carlo Collision(MCC)model was employed to deal with the collisions between charged particles and background gas molecules.The dynamic evolution of the plasma sheath,as well as the flux and energy distribution of ions impacting on the mirror surface,was discussed.It was found that the emission of secondary electrons under the EUV irradiation on the ruthenium mirror coating creates a positively charged wall and then prevents the ions from impacting on the mirror and therefore changes the flux and energy distribution of ions reaching the mirror.Furthermore,gas pressure has a notable effect on the plasma sheath and the characteristics of the ions impinging on the mirrors.With greater gas pressure,the sheath potential decreases more rapidly.The flux of ions received by the mirror grows approximately linearly and at the same time the energy corresponding to the peak flux decreases slightly.However,the EUV source intensity barely changes the sheath potential,and its influence on the ion impact is mainly limited to the approximate linear increase in ion flux. 展开更多
关键词 LITHOGRAPHY particle-in-cell EUV EUV-induced plasma PIC-MCC
在线阅读 下载PDF
Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm
5
作者 Kaixuan Li Cheng Ning +1 位作者 Ye Dong Chuang Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期433-442,共10页
For investigating efficiently the stagnation kinetic-process of Z-pinch,we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-ang... For investigating efficiently the stagnation kinetic-process of Z-pinch,we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-angle cumulative binary collision algorithm is used.In our algorithm,the electric field in z-direction is solved by a parallel electrode-plate model,the azimuthal magnetic field is obtained by Ampere’s law,and the term for charged particle gyromotion is approximated by the cross product of the averaged velocity and magnetic field.In simulation results of 2 MA deuterium plasma shell Zpinch,the mass-center implosion trajectory agrees generally with that obtained by one-dimensional MHD simulation,and the plasma current also closely aligns with the external current.The phase space diagrams and radial-velocity probability distributions of ions and electrons are obtained.The main kinetic characteristic of electron motion is thermal equilibrium and oscillation,which should be oscillated around the ions,while that of ion motion is implosion inwards.In the region of stagnation radius,the radial-velocity probability distribution of ions transits from the non-equilibrium to equilibrium state with the current increasing,while of electrons is basically the equilibrium state.When the initial ion density and current peak are not high enough,the ions may not reach their thermal equilibrium state through collisions even in its stagnation phase. 展开更多
关键词 Z-PINCH particle-in-cell ion heating charged particle collisions
在线阅读 下载PDF
Particle residence time distribution and axial dispersion coefficient in a pressurized circulating fluidized bed by using multiphase particle-in-cell simulation
6
作者 Jinnan Guo Daoyin Liu +2 位作者 Jiliang Ma Cai Liang Xiaoping Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期167-176,共10页
The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-... The particle residence time distribution(RTD)and axial dispersion coefficient are key parameters for the design and operation of a pressurized circulating fluidized bed(PCFB).In this study,the effects of pressure(0.1-0.6 MPa),fluidizing gas velocity(2-7 m·s^(-1)),and solid circulation rate(10-90 kg·m^(-2)·s^(-1))on particle RTD and axial dispersion coefficient in a PCFB are numerically investigated based on the multiphase particle-in-cell(MP-PIC)method.The details of the gas-solid flow behaviors of PCFB are revealed.Based on the gas-solid flow pattern,the particles tend to move more orderly under elevated pressures.With an increase in either fluidizing gas velocity or solid circulation rate,the mean residence time of particles decreases while the axial dispersion coefficient increases.With an increase in pressure,the core-annulus flow is strengthened,which leads to a wider shape of the particle RTD curve and a larger mean particle residence time.The back-mixing of particles increases with increasing pressure,resulting in an increase in the axial dispersion coefficient. 展开更多
关键词 Pressurized circulating fluidized bed MP-PIC method Residence time distribution Axial dispersion coefficient
在线阅读 下载PDF
Insight Into the Separation-of-Variable Methods for the Closed-Form Solutions of Free Vibration of Rectangular Thin Plates
7
作者 Yufeng Xing Ye Yuan Gen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期329-355,共27页
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica... The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well. 展开更多
关键词 Separation-of-variable method Rayleigh quotient nodal line eigenvalue equation bisection method
在线阅读 下载PDF
一种基于Least Square Method算法的城轨车辆车门动作时间精准判断的研究
8
作者 李宏菱 宋华杰 +3 位作者 马仲智 周辉 李晴 陈龙 《时代汽车》 2025年第3期190-192,共3页
为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波... 为研究城市轨道交通车辆客室车门动作时间精准性,门的动作主要依靠直流无刷电机的驱动,所以门动作判断的根本,是对电机运动状态的判读,门运动过程中由于电机码盘线受杂波干扰,系统无法准确寻找计时点从而影响系统判断门运动时间;建立波形矫正模型,利用数学方法校准波形,让MCU找出最佳计时点并处理(误差不超过10ms),采用最小二乘法模型,通过最小化误差的平方和找到一组数据的最佳函数匹配,求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,可精准地得到门动作时间。模拟测试结果表明,门动作时间测算误差所示其误差为7.42ms,小于10ms。 展开更多
关键词 城轨车辆 客室车门 电机码盘 Least Square method算法 门动作时间精准
在线阅读 下载PDF
Estimation of Chloride Diffusivity in Hydrated Tricalcium Silicate Using a Hydration-Diffusion Integrated Method
9
作者 WANG Xin SHEN Dejian +2 位作者 TAO Sijie LIU Ruixin WU Shengxing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期49-64,共16页
This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra... This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age. 展开更多
关键词 tricalcium silicate simulation method chloride diffusion coefficient pore solution
在线阅读 下载PDF
Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method
10
作者 Chengyong Peng JianshuWu +2 位作者 Mao Jiang Biao Yin Yishan Lou 《Energy Engineering》 EI 2025年第1期185-201,共17页
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract... To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures. 展开更多
关键词 Hydraulic fracturing discrete element method PROPPANT SPHERICITY CFD-DEM
在线阅读 下载PDF
Optimal Scheduling of an Independent Electro-Hydrogen System with Hybrid Energy Storage Using a Multi-Objective Standardization Fusion Method
11
作者 Suliang Ma Zeqing Meng +1 位作者 Mingxuan Chen Yuan Jiang 《Energy Engineering》 EI 2025年第1期63-84,共22页
In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimizatio... In the independent electro-hydrogen system(IEHS)with hybrid energy storage(HESS),achieving optimal scheduling is crucial.Still,it presents a challenge due to the significant deviations in values ofmultiple optimization objective functions caused by their physical dimensions.These deviations seriously affect the scheduling process.A novel standardization fusion method has been established to address this issue by analyzing the variation process of each objective function’s values.The optimal scheduling results of IEHS with HESS indicate that the economy and overall energy loss can be improved 2–3 times under different optimization methods.The proposed method better balances all optimization objective functions and reduces the impact of their dimensionality.When the cost of BESS decreases by approximately 30%,its participation deepens by about 1 time.Moreover,if the price of the electrolyzer is less than 15¥/kWh or if the cost of the fuel cell drops below 4¥/kWh,their participation will increase substantially.This study aims to provide a more reasonable approach to solving multi-objective optimization problems. 展开更多
关键词 Electro-hydrogen system multi-objective optimization standardization method hybrid energy storage system
在线阅读 下载PDF
Prediction of Wind Potential by Mathematical Methods: Application to the City of Mongo in CHAD
12
作者 Ali Ramadan Ali Moussa Ali Abdoulaye +1 位作者 Ahmat Idriss Hassan Gogo Abakar Mahamat Tahir 《Open Journal of Applied Sciences》 2025年第2期389-399,共11页
Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for ... Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction. 展开更多
关键词 Wind Potential Weibull Distribution Extrapolation method Power Conditioning
在线阅读 下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review
13
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 Structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
In situ stress inversion using nonlinear stress boundaries achieved by the bubbling method
14
作者 Xige Liu Chenchun Huang +3 位作者 Wancheng Zhu Joung Oh Chengguo Zhang Guangyao Si 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1510-1527,共18页
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha... Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries. 展开更多
关键词 In situ stress field Inversion method The bubbling method Nonlinear stress boundary Multiple linear regression method
在线阅读 下载PDF
Determination of Fracture Plane Orientation Using the Variance Method under Multiaxial Loading
15
作者 Mbaiyelkom Esdras Ngargueudedjim Kimtangar +2 位作者 Bianzeube Tikri Kenmeugne Bienvenu Fogue Médard 《Open Journal of Applied Sciences》 2025年第2期411-424,共14页
The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained expe... The prediction of the fracture plane orientation in fatigue is a scientific topic and remains relevant for every type of material. However, in this work, we compared the orientation of the fracture plane obtained experimentally through tests on specimens under multiaxial loading with that calculated by the variance method. In the statistical approach criteria, several methods have been developed but we have presented only one method, namely the variance method using the equivalent stress. She assumes that the fracture plane orientation is the one on which the variance of the equivalent stress is maximum. Three types of equivalent stress are defined for this method [1]: normal stress, shear stress and combined normal and shear stress. The results obtained were compared with experimental results for multiaxial cyclic stress states, and it emerges that the variance method for the case of combined loading is conservative as it gives a better prediction of the fracture plane. 展开更多
关键词 Biaxial Fatigue Fracture Plane Orientation Critical Fracture Plane Variance method Fatigue Criteria
在线阅读 下载PDF
An efficient and accurate numerical method for simulating close-range blast loads of cylindrical charges based on neural network
16
作者 Ting Liu Changhai Chen +2 位作者 Han Li Yaowen Yu Yuansheng Cheng 《Defence Technology(防务技术)》 2025年第2期257-271,共15页
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim... To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures. 展开更多
关键词 Close-range air blast load Cylindrical charge Numerical method Neural network CEL method CONWEP model
在线阅读 下载PDF
A Boundary-Type Meshless Method for Traction Identification in Two-Dimensional Anisotropic Elasticity and Investigating the Effective Parameters
17
作者 Mohammad-Rahim Hematiyan 《Computers, Materials & Continua》 2025年第2期3069-3090,共22页
The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using in... The identification of the traction acting on a portion of the surface of an anisotropic solid is very important in structural health monitoring and optimal design of structures. The traction can be determined using inverse methods in which displacement or strain measurements are taken at several points on the body. This paper presents an inverse method based on the method of fundamental solutions for the traction identification problem in two-dimensional anisotropic elasticity. The method of fundamental solutions is an efficient boundary-type meshless method widely used for analyzing various problems. Since the problem is linear, the sensitivity analysis is simply performed by solving the corresponding direct problem several times with different loads. The effects of important parameters such as the number of measurement data, the position of the measurement points, the amount of measurement error, and the type of measurement, i.e., displacement or strain, on the results are also investigated. The results obtained show that the presented inverse method is suitable for the problem of traction identification. It can be concluded from the results that the use of strain measurements in the inverse analysis leads to more accurate results than the use of displacement measurements. It is also found that measurement points closer to the boundary with unknown traction provide more reliable solutions. Additionally, it is found that increasing the number of measurement points increases the accuracy of the inverse solution. However, in cases with a large number of measurement points, further increasing the number of measurement data has little effect on the results. 展开更多
关键词 Traction identification inverse method anisotropic elasticity load identification method of fundamental solutions measurement location
在线阅读 下载PDF
Effects of spatial heterogeneity on pseudo-static stability of coal mine overburden dump slope,using random limit equilibrium and random finite element methods:A comparative study
18
作者 Madhumita Mohanty Rajib Sarkar Sarat Kumar Das 《Earthquake Engineering and Engineering Vibration》 2025年第1期83-99,共17页
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate... Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1. 展开更多
关键词 coal mine overburden dump slope random limit equilibrium method random finite element method seismic slope stability spatial heterogeneity
在线阅读 下载PDF
Finite Volume Element Method for Fractional Order Neutral Time-Delay Differential Equations
19
作者 Zicheng Wei Qing Yang 《Engineering(科研)》 2025年第1期30-52,共23页
Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, et... Fractional-order time-delay differential equations can describe many complex physical phenomena with memory or delay effects, which are widely used in the fields of cell biology, control systems, signal processing, etc. Therefore, it is of great significance to study fractional-order time-delay differential equations. In this paper, we discuss a finite volume element method for a class of fractional-order neutral time-delay differential equations. By introducing an intermediate variable, the fourth-order problem is transformed into a system of equations consisting of two second-order partial differential equations. The L1 formula is used to approximate the time fractional order derivative terms, and the finite volume element method is used in space. A fully discrete format of the equations is established, and we prove the existence, uniqueness, convergence and stability of the solution. Finally, the validity of the format is verified by numerical examples. 展开更多
关键词 Fractional Order Time-Delay Differential Equation Finite Volume Element method L1 Approximation Error Estimation Numerical Simulation
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning
20
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 Deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部