期刊文献+
共找到741篇文章
< 1 2 38 >
每页显示 20 50 100
Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury 被引量:4
1
作者 Jindou Jiang Xingyao Bu +1 位作者 Meng Liu Peixun Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第1期46-53,共8页
Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes a... Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. 展开更多
关键词 ANGIOGENESIS NEUROGENESIS neurotrophic factors bone marrow-derived mesenchymal stem cells traumatic brain injury stem cell transplantation neural regeneration
在线阅读 下载PDF
Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells 被引量:23
2
作者 Xiao-Hong Wu Cui-Ping Liu Kuan-Feng Xu Xiao-Dong Mao Jian Zhu Jing-Jing Jiang Dai Cui Mei Zhang Yu Xu Chao Liu 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第24期3342-3349,共8页
AIM: To study the capacity of bone marrow mesenchymal stem cells (BM-MSCs) trans-differentiating into islet-like cells and to observe the effect of portal vein transplantation of islet-like cells in the treatment of s... AIM: To study the capacity of bone marrow mesenchymal stem cells (BM-MSCs) trans-differentiating into islet-like cells and to observe the effect of portal vein transplantation of islet-like cells in the treatment of streptozotocin-induced diabetic rat. METHODS: BM-MSCs were isolated from SD rats and induced to differentiate into islet-like cells under defined conditions. Differentiation was evaluated with electron microscopy, RT-PCR, immunofluorescence and flow cytometry. insulin release after glucose challenge was tested with ELiSA. Then allogeneic islet-like cells were transplanted into diabetic rats via portal vein. Blood glucose levels were monitored and islet hormones were detected in the liver and pancreas of the recipient by immunohistochemistry. RESULTS: BM-MSCs were spheroid adherent monolayers with high CD90, CD29 and very low CD45 expression. Typical islet-like cells clusters were formed after induction. Electron microscopy revealed that secretory granules were densely packed within the cytoplasm of the differentiated cells. The spheroid cells expressed islet related genes and hormones. The insulin-positive cells accounted for 19.8% and mean fluorescence intensity increased by 2.6 fold after induction. The cells secreted a small amount of insulin that was increased 1.5 fold after glucose challenge. After transplantation, islet-like cells could locate in the liver expressing islet hormones and lower the glucose levels of diabetic rats during d 6 to d 20.CONCLUSION: Rat BM-MSCs could be transdifferentiated into islet-like cells in vitro . Portal vein transplantation of islet-like cells could alleviate the hyperglycemia of diabetic rats. 展开更多
关键词 bone marrow mesenchymal stem cells TRANS-DIFFERENTIATION ISLET INSULIN transplantation
在线阅读 下载PDF
Effects of heme oxygenase-1-modified bone marrow mesenchymal stem cells on microcirculation and energy metabolism following liver transplantation 被引量:10
3
作者 Liu Yang Zhong-Yang Shen +5 位作者 Rao-Rao Wang Ming-Li Yin Wei-Ping Zheng Bin Wu Tao Liu Hong-Li Song 《World Journal of Gastroenterology》 SCIE CAS 2017年第19期3449-3467,共19页
AIM To investigate the effects of heme oxygenase-1(HO-1)-modified bone marrow mesenchymal stem cells(BMMSCs)on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantati... AIM To investigate the effects of heme oxygenase-1(HO-1)-modified bone marrow mesenchymal stem cells(BMMSCs)on the microcirculation and energy metabolism of hepatic sinusoids following reduced-size liver transplantation(RLT)in a rat model.METHODS BMMSCs were isolated and cultured in vitro using an adherent method,and then transduced with HO-1-bearing recombinant adenovirus to construct HO-1/BMMSCs.A rat acute rejection model following 50%RLT was established using a two-cuff technique.Recipients were divided into three groups based on the treatment received:normal saline(NS),BMMSCs and HO-1/BMMSCs.Liver function was examined at six time points.The levels of endothelin-1(ET-1),endothelial nitric-oxide synthase(e NOS),inducible nitric-oxide synthase(i NOS),nitric oxide(NO),and hyaluronic acid(HA)were detected using an enzyme-linked immunosorbent assay.The portal vein pressure(PVP)was detected by Power Lab ML880.The expressions of ET-1,i NOS,e NOS,and von Willebrand factor(v WF)protein in the transplanted liver were detected using immunohistochemistry and Western blotting.ATPase in the transplanted liver was detected by chemical colorimetry,and the ultrastructural changes were observed under a transmission electron microscope.RESULTS HO-1/BMMSCs could alleviate the pathological changes and rejection activity index of the transplanted liver,and improve the liver function of rats following 50%RLT,with statistically significant differences compared with those of the NS group and BMMSCs group(P<0.05).In term of the microcirculation of hepatic sinusoids:The PVP on POD7 decreased significantly in the HO-1/BMMSCs and BMMSCs groups compared with that of the NS group(P<0.01);HO-1/BMMSCs could inhibit the expressions of ET-1 and i NOS,increase the expressions of e NOS and inhibit amounts of NO production,and maintain the equilibrium of ET-1/NO(P<0.05);and HO-1/BMMSCs increased the expression of v WF in hepatic sinusoidal endothelial cells(SECs),and promoted the degradation of HA,compared with those of the NS group and BMMSCs group(P<0.05).In term of the energy metabolism of the transplanted liver,HO-1/BMMSCs repaired the damaged mitochondria,and improved the activity of mitochondrial aspartate aminotransferase(ASTm)and ATPase,compared with the other two groups(P<0.05).CONCLUSION HO-1/BMMSCs can improve the microcirculation of hepatic sinusoids significantly,and recover the energy metabolism of damaged hepatocytes in rats following RLT,thus protecting the transplanted liver. 展开更多
关键词 Reduced-size liver transplantation bone marrow mesenchymal stem cells MICROCIRCULATION Heme oxygenase-1 Energy metabolism
在线阅读 下载PDF
Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia 被引量:8
4
作者 Dong Wang Jianjun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期749-755,共7页
Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein whi... Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury. 展开更多
关键词 bone marrow mesenchymal stem cells electrophysiological function HYPOTHERMIA spinal cord hemisection injury transplantation
在线阅读 下载PDF
Protective effect of bone marrow mesenchymal stem cells in intestinal barrier permeability after heterotopic intestinal transplantation 被引量:12
5
作者 Wen Zhang Zhong-Yang Shen +4 位作者 Hong-Li Song Yang Yang Ben-Juan Wu Nan-Nan Fu Tao Liu 《World Journal of Gastroenterology》 SCIE CAS 2014年第23期7442-7451,共10页
AIM: To explore the protective effect of bone marrow mesenchymal stem cells (BM MSCs) in the small intestinal mucosal barrier following heterotopic intestinal transplantation (HIT) in a rat model.
关键词 bone marrow mesenchymal stem cells Small intestinal transplantation Intestinal mucosal barrier OCCLUDIN Zona occludens-1
在线阅读 下载PDF
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:9
6
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
在线阅读 下载PDF
Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury 被引量:2
7
作者 ChangshengWang Jianhua Lin Chaoyang Wu Rongsheng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第16期1211-1216,共6页
Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1,... Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1,3, and 5 weeks after transplantation, the expression of brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors. 展开更多
关键词 brain-derived neurotrophic factor bone marrow mesenchymal stem cells gene modification intravenous transplantation spinal cord injury neural regeneration
在线阅读 下载PDF
Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy 被引量:1
8
作者 Yue-xin Wang Jing-jing Sun +4 位作者 Mei Zhang Xiao-hua Hou Jun Hong Ya-jing Zhou Zhi-yong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期636-643,共8页
The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to exp... The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantationvia tail vein injection and/or propofol injectionvia tail vein using an infusion pump. Four weeks after cell transplan-tation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve ifbers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electro-physiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells PROPOFOL spinal cord injury cell transplantation ELECTROPHYSIOLOGY motor function stem cells NEUROPROTECTION neural regeneration
在线阅读 下载PDF
Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation 被引量:5
9
作者 Ya-jing Zhou Jian-min Liu +3 位作者 Shu-ming Wei Yun-hao Zhang Zhen-hua Qu Shu-bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1305-1311,共7页
Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair u... Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells stem cell transplantation propofol spinal cord injury repair neuroprotection anesthesia neural regeneration
在线阅读 下载PDF
Platelet-rich plasma-induced bone marrow mesenchymal stem cells versus autologous nerve grafting for sciatic nerve repair 被引量:1
10
作者 Changsuo Xia Yajuan Li Wen Cao Zhaohua Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第17期1291-1295,共5页
Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured... Autologous nerve grafting is the gold standard of peripheral nerve repair.We previously showed that autologous platelet-rich plasma(PRP)contains high concentrations of growth factors and can induce in vitro cultured bone marrow mesenchymal stem cells(BMSCs)to differentiate into Schwann cells.Here we used PRP-induced BMSCs combined with chemically extracted acellular nerves to repair sciatic nerve defects and compared the effect with autologous nerve grafting.The BMSCs and chemically extracted acellular nerve promoted target muscle wet weight restoration,motor nerve conduction velocity,and axonal and myelin sheath regeneration,with similar effectiveness to autologous nerve grafting.This finding suggests that PRP induced BMSCs can be used to repair peripheral nerve defects. 展开更多
关键词 bone marrow mesenchymal stem cells platelet-rich plasma peripheral nerve transplantation tissue engineering
在线阅读 下载PDF
660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment
11
作者 Xianchao Li Wensheng Hou +4 位作者 Xiaoying Wu Wei Jiang Haiyan Chen Nong Xiao Ping Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期236-242,共7页
Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and diff... Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy- poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra- tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cmz, an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 x 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes cells, thereby enhancing the contribution ic-ischemic brain damage. the migration of bone marrow mesenchymal stem of cell transplantation in the treatment of hypox- 展开更多
关键词 nerve regeneration stem cells Transwell assay red light hypoxic-ischemic brain damage bone marrow mesenchymal stem cells transplantation cell migration learning ability NSFC grant neural regeneration
在线阅读 下载PDF
Experimental study of qishen yiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice with myocardial infarction
12
作者 Gui-Xin He Ting Xiao +7 位作者 Wei-Bin Qin Lin Lin Xiao-Yun Mo Qing-Wei Zhang Cheng-Qiang Wu Yong-Yan Shen Li-YanYu Yu-Fei Feng 《Journal of Hainan Medical University》 2021年第5期1-6,共6页
Objective:To investigate the effects ofQishengyiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice after myocardial infarction through in vitro ce... Objective:To investigate the effects ofQishengyiqi drop pill combined with bone marrow mesenchymal stem cell transplantation on angiogenesis and cardiac function in mice after myocardial infarction through in vitro cell molecular biology experiments.Methods:The animals used in this experiment were male mice with eGFP+/-.Sixty mice were randomly divided into three groups(n=20):myocardial infarction group(MI+PBS),myocardial infarction+mesenchyme plasma stem cell transplantation group(MI+MSCs)and myocardial infarction+Qishenyiqi drip pill combined with mesenchymal stem cell transplantation group(MI+MSCs+QSYQ).Qishenyiqi dripping pills were prepared into a medicinal solution with a concentration of 3.9 mg/mL with distilled water.The MI+MSCs+QSYQ group was orally administered with 0.1 mL/kg/day,and the other two groups were orally administered with an equal amount of normal saline.Mice in each group were adaptively fed continuously for 2 weeks,and the myocardial infarction model was established by ligation of the anterior descending coronary artery by thoracic ligation.Twenty-four hours after the model was established,bone marrow mesenchymal stem cells were isolated from the tibia of the mice and injected intracardiacly Bone marrow-derived mesenchymal stem cells were transplanted,and multiple injections were made around the myocardial infarction area of mice.The control group was injected with the same amount of PBS.0h,3 days,7 days,and 14 days after cell transplantation,observe the stem cell morphology under a microscope;on day 7 of cell transplantation,track the expression of eGFP-positive cells with a fluorescence microscope;before modeling,14 and 21 days after cell transplantation,use Cardiac function was measured by echocardiography.After 21 days of modeling,the mice were sacrificed,and heart samples were taken.The angiogenesis of the mice was observed by immunohistochemical staining and microvascular density determination.Results:The morphological growth of transplanted stem cells was proportional to the time of cell transplantation.Compared with MI+PBS group,CD90.2 and y6A were highly expressed on the surface of bone marrow mesenchymal stem cells in MI+MSCs group and MI+MSCs+QSYQ group,while CD31 and CD117 were almost not expressed.On the 21st day after stem cell transplantation,the values of LVDd and LVSD in MI+MSCs+QSYQ group were significantly lower than those in MI+PBS group and MI+MSCs group.At the same time,LVEF and LVFS increased significantly.The results of quantitative immunohistochemical analysis showed that the angiogenesis density in the MI+MSCs+QSYQ group increased significantly,and the difference between the groups was statistically significant(P<0.05).Conclusion:Qishen Yiqi dripping pills combined with bone marrow mesenchymal stem cell transplantation can not only promote angiogenesis in mice with myocardial infarction,but also play a positive role in improving cardiac function. 展开更多
关键词 stem cells transplantation bone marrow mesenchymal stem cells Qishenyiqi drop pills Myocardial infarction ANGIOGENESIS Cardiac function
在线阅读 下载PDF
Effects of transplantation of human bone marrow mesenchymal stem cells in rats with liver failure
13
作者 Yang-Gang Yan Jin-Cai Wu +5 位作者 Jia-Cheng Chen Da-Feng Xu Cheng Chen Xing Li Sheng-Yi Tan Zhuo-Ri Li 《Journal of Hainan Medical University》 2020年第3期5-9,共5页
Objective: To investigate the effect of hepatic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) induced in vitro and transplanted into rats with liver failure via portal vein, and observe the chan... Objective: To investigate the effect of hepatic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) induced in vitro and transplanted into rats with liver failure via portal vein, and observe the changes of liver function and pathological tissue. Method:After passage to the 6th generation in vitro, the hepatic differentiation was induced by HGFand EGF inducible factors. CCL4 acute liver failure model in rats were established, and randomly divided into 5 groups transplanted with differentiated stem cells via portal vein. These five groups included HGF-differentiated HBMSCs transplantation, EGF-differentiated HBMSCs transplantation, EGF+HGF-differentiated HBMSCs transplantation, non-differentiated HBMSCs transplantation, and non-HBMSCs transplantation. Liver function and pathological changes were detected. Results: Rats models survival, serum albumin, aminotransferase and coagulation indexes were observed at 12 h, 72 h, 7 d, 1 month and 2 months after treatment. The results showed that the survival and albumin, aminotransferase and coagulation function of rats were improved significantly after treatment in HGF-differentiated, EGF-differentiated, EGF+HGF-differentiated and non-differentiated transplantation groups, compared tothe non-HBMSCstransplantation group(P<0.05), while no significance was observed in above four groups(P>0.05).Pathological changes was ameliorated in the liver of rat models in HGF-, EGF-, EGF+HGF- and non-differentiated transplantation groups, compared to the non-HBMSCs transplantation group. Conclusion: Liver-differentiated BMSCs transplanted into rats with liver failure could effectively improve liver function and survival rate. 展开更多
关键词 Human bone marrow mesenchymal stem cells INDUCIBLE factor HEPATIC differentiation stem cell transplantation
在线阅读 下载PDF
Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation
14
作者 Huicong Kang Qi Hu +4 位作者 Xiaoyan Liu Yinhe Liu Feng Xu Xiang Li Suiqiang Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期251-255,共5页
In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine, Immunofluorescence and western bl... In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine, Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges. 展开更多
关键词 bone marrow-derived mesenchymal stem cells chronic epilepsy cell transplantation reconstruction adenosine system ELECTROENCEPHALOGRAM IMMUNOHISTOCHEMISTRY
在线阅读 下载PDF
Hypoxic Preconditioning Improved Neuroprotective Effect of Bone Marrow-Mesenchymal Stem Cells Transplantation in Acute Glaucoma Models
15
作者 Titiek Ernawati Gatut Suhendro +6 位作者 I Ketut Sudiana Suhartono Taat Putra Harjanto JM Sunarjo Agus Turchan Fedik Abdul Rantam 《Journal of Biomedical Science and Engineering》 2016年第4期245-257,共13页
This study explored the novel strategy of hypoxic preconditioning of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) before intra vitreal transplantation to improve neuroprotective effects of Retinal Ganglion Cells (RGCs... This study explored the novel strategy of hypoxic preconditioning of Bone Marrow Mesenchymal Stem Cells (BM-MSCs) before intra vitreal transplantation to improve neuroprotective effects of Retinal Ganglion Cells (RGCs) in Acute Glaucoma Models. The methods of this research were isolated mesenchymal stem cells from the bone marrow of adult wild-type Sprague-Dawley (SD) rats. BM-MSCs were cultured under normoxic or hypoxic (1% oxygen for 24 hours) conditions. Normoxic or hypoxic BM-MSCs were transplanted intravitreally 1 week after ocular hypertension induction by acutely increasing IOP to 100 - 120 mmHg for 60 minutes. Rats were killed 4 weeks after transplanted. Apoptosis was examined by tunnel assay and expression Brn3b (Brn3b = RGCs marker) by immunohistochemical analysis of the retina. Results showed that transplantation of hypoxic preconditioning BM-MSCs in acute glaucoma models resulted in a significant apoptosis decreasing (p < 0.05) and an significant increasing in RGCs (p < 0.05), as well as enhanced mor-phologic and functional benefits of stem cell therapy versus normoxic BM-MSCs transplantation. Conclusions: Hypoxic preconditioning enhances the capacity of BM-MSCs transplantation to improve neuroprotective effects of RGCs in Acute Glaucoma Models. 展开更多
关键词 Hypoxic Preconditioning transplantation bone marrow-mesenchymal stem cells BM-MSCs GLAUCOMA NEUROPROTECTIVE
在线阅读 下载PDF
The effect of bone marrow mesenchymal stem cell transplantation on hypoxic pulmonary hypertension in rats
16
作者 Hongjun Tian Jingping Yang Xiuxiang Wang 《Discussion of Clinical Cases》 2018年第4期17-22,共6页
Objective:To study the influence of bone marrow mesenchymal stem cells(MSCs)transplantation on hypoxic pulmonary hypertension(HPH)in rats.Methods:MSCs in SD rats were separated,cultivated,identified in vitro,and label... Objective:To study the influence of bone marrow mesenchymal stem cells(MSCs)transplantation on hypoxic pulmonary hypertension(HPH)in rats.Methods:MSCs in SD rats were separated,cultivated,identified in vitro,and labeled by the green fluorescence protein(GFP)adenovirus.Healthy male SD rats were randomly divided into four groups:normal control group(NC group)and HPH group,with eight rats in each group respectively;HPH+mesenchymal stem cell transplantation group(MSCs group)and HPH+vascular endothelial growth factor+mesenchymal stem cell transplantation group(VEGF+MSCs group),with twenty-four rats in each group respectively.In this experiment,intermittent normobaric hypoxia was employed to establish the pulmonary hypertension rat models,with stem cells transfected and transplanted.The mean pulmonary artery pressure(mPAP)was observed in rats to calculate the right ventricular hypertrophy index(RVHI);the morphological changes of pulmonary arterioles in each group of rats were observed under the microscope;the distribution and manifestation of MSCs fluorescently labeled by adenovirus transfection were observed in pulmonary arterioles under the fluorescence microscope at the set time points of 7 d,14 d and 28 d after the transplantation of stem cells.Results:For NC group,the mPAP(mmHg)was 15.5±1.5 at 28 d,while the mPAP in HPH,MSCs and VEGF+MSCs groups were 26.1±1.9,21.6±2.7 and 20.1±2.9 respectively which were apparently higher than that in NC group(p<.01).Compared with HPH group(p<.01),the mPAP was obviously decreased in MSCs and VEGF+MSCs groups.There was no significant difference between MSCs and VEGF+MSCs groups.At 28 d,RVHI for NC group was 0.28±0.02,while the RVHI in HPH,MSCs and VEGF+MSCs groups were 0.43±0.07,0.34±0.03 and 0.35±0.01 respectively which were apparently higher than that in NC group(p<.01).In comparison with HPH group,RVHI was significantly decreased in MSCs and VEGF+MSCs groups(p<.05).There was no significant difference between MSCs and VEGF+MSCs groups.For HPH group,at 28 d,pulmonary arterioles were apparently thickened,with luminal stenosis&obliteration and incomplete endothelial cells.Compared with HPH group,pulmonary arterioles in MSCs group became thinning,with the lumen unobstructed and the integrity of endothelial cells improved.The changes in the manifestation of MSCs and VEGF+MSCs groups were not significant.Conclusions:The transplantation of MSCs can improve the remodeling of pulmonary arterioles to partially reverse the progress of HPH;the combined transplantation of VEGF and MSCs doesn’t improve the effect of MSC transplantation. 展开更多
关键词 Hypoxia pulmonary hypertension bone marrow mesenchymal stem cells stem cell transplantation Vascular endothelial growth factor RATS
在线阅读 下载PDF
Improvement of neurological function in rats with spinal cord injury after the transplantation of neural stem cells directly differentiated from bone marrow mesenchymal stem cells
17
作者 张小宁 《外科研究与新技术》 2011年第4期290-290,共1页
Objective To study the effect and mechanism of neurological function recovery in rats with spinal cord injury ( SCI) rats after transplantation of neural stem cells which are directly differentiated from bone marrow m... Objective To study the effect and mechanism of neurological function recovery in rats with spinal cord injury ( SCI) rats after transplantation of neural stem cells which are directly differentiated from bone marrow mesenchymal stem cells ( BMSC ) ,and to investigate the suitable engraftment time. Methods BMSC at 3rd passage were differentiated into neural stem cells ( NSC) , and immunofluorescence staining was used to 展开更多
关键词 bone Improvement of neurological function in rats with spinal cord injury after the transplantation of neural stem cells directly differentiated from bone marrow mesenchymal stem cells stem
在线阅读 下载PDF
Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells 被引量:36
18
作者 Raquel Taléns-Visconti Ana Bonora +4 位作者 Ramiro Jover Vicente Mirabet Francisco Carbonell José Vicente Castell María José Gómez-Lechón 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第36期5834-5845,共12页
AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into h... AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC. METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thyl decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing. 展开更多
关键词 mesenchymal stem cells bone marrow Adipose tissue TRANSDIFFERENTIATION Hepatic lineage Liver cell transplantation.
在线阅读 下载PDF
Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury 被引量:10
19
作者 Chun Zhang Xijing He +1 位作者 Haopeng Li Guoyu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第11期965-974,共10页
As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment op... As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury stem cells chondroitin sulfate proteoglycans ASTROCYTES glial scar chondroitinase ABC bone marrow mesenchymal stem cells transplantation chemicalbarrier NEUROREGENERATION
在线阅读 下载PDF
Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells 被引量:5
20
作者 Yuxin Wu Jinghan Zhang Xiaoming Ben 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第22期2078-2085,共8页
Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed col... Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were sepa- rated and cultured using the "pour-off" method. Non-adherent bone marrow cell-derived mesen- chymal stem ceils developed colony-forming unit-fibroblasts, and could be expanded by supple- mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cell-derived mesenchymal stem cells from 13-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cells positive for LacZ and 13-galactosidase staining were observed in the ischemic tissues, and cells co-labeled with both 13-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cell-derived mesenchymal stem cells could differentiate into neuronal-like cells in vitro and in vivo. 展开更多
关键词 neural regeneration stem cells non-adherent bone marrow cell-derived mesenchymal stem cells neuronal-like cells colony-forming unit-fibroblasts proliferation differentiation beta-galactosidasetransgenic mouse cell transplantation cerebral ischemia bone marrow cells-derived mesenchymalstem cells grants-supported paper neuroregeneration
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部