BACKGROUND Axial and coronal reformations have been a widely used image post-processing protocol for the ordinary multidetector computed tomography(MDCT)examination of patients with small bowel obstruction(SBO) or oth...BACKGROUND Axial and coronal reformations have been a widely used image post-processing protocol for the ordinary multidetector computed tomography(MDCT)examination of patients with small bowel obstruction(SBO) or other abdominal diseases. The diagnostic accuracy of MDCT for assessing SBO is expected to be further improved through the use of multiple post-processing techniques.AIM To systemically evaluate the diagnostic accuracy and efficiency of an optimized protocol using multiple post-processing techniques for MDCT assessment of SBO and secondary bowel ischemia.METHODS This retrospective cross-sectional study included 106 patients with clinically suspected SBO. Two readers applied three protocols to image post-processing and interpretation of patients' MDCT volume data. We compared the three protocols based on time spent, number of images, diagnostic self-confidence,agreement, detection rate, and accuracy of detection of SBO and secondary bowel ischemia.RESULTS Protocol 2 resulted in more time spent and number of images than protocols 1 and 3(P < 0.01), but the results of the two readers using the same protocol were not different(P > 0.05). Using protocol 3, both readers added multiple postprocessing techniques at frequencies of 29.2% and 34.9%, respectively, for obstruction cause, and 32.1% and 30.2%, respectively, for secondary bowel ischemia. Protocols 2 and 3 had higher total detection rates of obstruction cause and secondary bowel ischemia than protocol 1(P < 0.01), but no difference was detected between protocols 2 and 3(P > 0.05). The accuracy, sensitivity,specificity, positive predictive value and negative predictive value of protocols 2 and 3 were superior to those of protocol 1 for evaluating obstruction cause and secondary bowel ischemia.CONCLUSION Our optimized protocol of multiple post-processing techniques can both guarantee efficiency and improve diagnostic accuracy of MDCT for assessing SBO and secondary bowel ischemia.展开更多
BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of th...BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.展开更多
With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed...With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.展开更多
Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of suc...Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.展开更多
Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We dis...Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.展开更多
Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradi...Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in ...Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral.展开更多
BACKGROUND Surgically created arterio-venous fistulas(AVFs)are the gold standard for haemodialysis access for patients with end-stage renal disease.Standard practice of AVF creation involves selecting the non-dominant...BACKGROUND Surgically created arterio-venous fistulas(AVFs)are the gold standard for haemodialysis access for patients with end-stage renal disease.Standard practice of AVF creation involves selecting the non-dominant upper limb and starting with most distally with radio-cephalic arterio-venous fistula.The primary patency rate of radio-cephalic arterio-venous fistula varies from 20%-25%.It has been suggested the neointimal hyperplasia at the mobilized venous segment causes stenosis of the anastomosis.Therefore,the radial artery deviation and reimplantation(RADAR)technique,in which the vein is minimally mobilized,should result in a higher success rate.AIM To compare the RADAR technique with classical technique in creation of AVF including:(1)Success rate;(2)Time to maturation;(3)Duration of surgery;and(4)Complication rate.METHODS In our study we recruited 94 patients in two randomized groups and performed the AVF by the classical method or the RADAR method.RESULTS The RADAR group had higher primary success rate(P=0.007),less rate of complications(P=0.04),shorter duration of surgery(P=0.00)and early time to maturation(0.001)when compared with the classical group.The RADAR procedure is a safe and a more efficient alternative to the current classical method of AVF creation.Longer duration of follow-up is required to assess the long-term outcomes in the future.CONCLUSION The RADAR procedure is a safe and more efficient alternative to the current classical method of AVF creation.Longer duration of follow-up is required to assess the long-term outcomes in the future.展开更多
Surgical advancements have transformed colorectal cancer treatment, withcomplete mesocolic excision (CME) becoming a crucial method to guaranteeoncological safety and effectiveness. The article by Yadav emphasized the...Surgical advancements have transformed colorectal cancer treatment, withcomplete mesocolic excision (CME) becoming a crucial method to guaranteeoncological safety and effectiveness. The article by Yadav emphasized the significanceof CME in attaining optimal resection margins, thorough lymph nodedissection, and enhanced long-term survival rates. The adjunctive function of D3lymphadenectomy, emphasizing the clearance of lymphatic drainage along thesupplying vessels, was also addressed. CME with central vascular ligation, basedon the principles of total mesorectal excision for rectal cancer, entails en bloc tumorresection and precise dissection along the embryological planes, thus diminishingrecurrence and improving survival rates. The viability and safety of minimallyinvasive techniques, such as laparoscopic CME, have been confirmed;however,technical difficulties remain owing to the intricate vascular anatomy. Roboticassistedsurgery presents potential benefits, including accurate lymphatic dissectionand intracorporeal anastomosis. However, evidence demonstrating itssuperiority over laparoscopic techniques is scarce owing to high costs and prolongedduration. This study promotes the global standardization of CME as anessential element of modern colorectal cancer surgery. CME epitomizes contemporaryoncological practices, requiring widespread adoption to achieve superiorityin colon cancer management.展开更多
Figure 3 in the paper[Chin.Phys.B 34020701(2025)]contains an axis labeling error.The revised figure is provided.This modification does not affect the result presented in the paper.
Recently,we read a retrospective study by Chen et al,which demonstrated that electroacupuncture is highly effective in relieving pain due to rotator cuff injuries and accelerating the recovery of shoulder function,pro...Recently,we read a retrospective study by Chen et al,which demonstrated that electroacupuncture is highly effective in relieving pain due to rotator cuff injuries and accelerating the recovery of shoulder function,promoting repair of rotator cuff injuries.This study provides a new way to the conservative treatment of early rotator cuff injuries.In the present letter,we review the current treatment of rotator cuff injury with electroacupuncture combined with rehabilitation techniques and propose our views.展开更多
Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we...Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.展开更多
In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixture...In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.展开更多
BACKGROUND Gastrointestinal submucosal tumors(SMTs)mostly grew in the lumen,but also some of the lesions were extraluminal,in which the stomach was the most co-mmon site.Gastrointestinal stromal tumor account for a la...BACKGROUND Gastrointestinal submucosal tumors(SMTs)mostly grew in the lumen,but also some of the lesions were extraluminal,in which the stomach was the most co-mmon site.Gastrointestinal stromal tumor account for a large proportion of SMT.Due to the deep lesion location of gastric SMT,endoscopic submucosal dissection related techniques are difficult to operate,while endoscopic full-thickness rese-ction(EFTR)has been widely used in clinical practice because it is less invasive and can preserve the physiological structure and function of the stomach.Ho-wever,complete closure of the gastrectomy site after EFTR is critical.If the closure is incomplete,it may cause peritonitis,late perforation and other conditions,and even require further surgical intervention.Although there are currently a number of suture devices and techniques that can be used to promote closure,they have the problem of requiring additional equipment or being inconvenient to use.Although metal clips are widely used,their effectiveness depends on the size and tension of the defect.Therefore,an effective and convenient endoscopic closure technique is urgently needed to solve the closure problem of gastric SMTs after treatment.AIM To investigate the effect of combined application of the preclosure technique and dental floss traction in gastric wound closure following EFTR.METHODS In this study,the data of 94 patients treated for gastric SMTs at the Gastrointestinal Endoscopy Center of the Affiliated Union Hospital of Fujian Medical University from April 2022 to May 2023 were retrospectively analyzed.The patients were divided into a preclosure group(54 patients)and a non-preclosure group(40 patients)on the basis of the timing of wound closure with titanium clips after dental floss traction-assisted EFTR.Each patient in the preclosure group had their wounds preclosed with titanium clips after subtotal lesion resection,whereas each patient in the non-preclosure group had their wounds closed with titanium clips after total lesion resection.The lesion size,wound closure time,number of titanium clips used,incidence of postoperative complications,and postoperative hospitalization time were compared between the two groups.RESULTS The wound closure time was significantly shorter in the preclosure group than in the non-preclosure group(6.69±2.109 minutes vs 11.65±3.786 minutes,P<0.001).The number of titanium clips used was significantly lower in the preclosure group(8.93±2.231)than in the non-preclosure group(12.05±4.495)(P<0.001).There was no sig-nificant difference between the two groups in terms of the need for an indwelling gastric tube or the length of postoperative hospital stay(6.41±1.31 vs 6.13±1.06 days).For all patients in the preclosure group and the non-preclosure group,resection was completed successfully without bleeding,abdominal pain,abdominal distension,or other postoperative complications.CONCLUSION Application of the preclosure technique combined with dental floss traction can be used intraoperatively to effectively close the surgical wound in patients undergoing EFTR,reliably preventing the tumor from falling into the peritoneal cavity.展开更多
BACKGROUND Congenital renal arteriovenous fistula(RAVF)is a clinically rare condition and frequently missed and misdiagnosed.Multimodal imaging techniques can pro-vide more detailed diagnostic information to help phys...BACKGROUND Congenital renal arteriovenous fistula(RAVF)is a clinically rare condition and frequently missed and misdiagnosed.Multimodal imaging techniques can pro-vide more detailed diagnostic information to help physicians more accurately diagnose and treat diseases.Combining imaging methods to diagnose RAVF has rarely been reported.CASE SUMMARY A 69-year-old female patient presented with gross hematuria that had persisted for 10 days.The patient underwent ultrasound examinations of the kidneys and renal blood vessels,enhanced computed tomography,three-dimensional com-puted tomography angiography,and digital subtraction angiography of the renal arteries.These revealed dilatation of the left renal vein and abnormal shunting between the left renal artery and vein.The patient was diagnosed with a left RAVF using combined multimodal imaging techniques.The patient was treated with left renal artery embolization immediately after renal arteriography.Hema-turia resolved following the left renal artery embolization without serious bleeding or other complications.The patient made a full recovery after one year of postoperative follow-up.CONCLUSION Multimodal imaging techniques complement each other when diagnosing RAVF,providing detailed diagnostic information that can aid in accurate diagnosis and treatment.In addition,this case reminds the sonographer to pay more attention to the color doppler flow imaging and blood flow spectrum when examining the kidney,so as to avoid misdiagnosis of renal cystic lesions as renal cysts and missed diagnosis of RAVF.展开更多
The purpose of this study was to explore the application of TCM-appropriate technology in neurogenic bladder rehabilitation nursing.Firstly,the background and contents of the study were introduced.Then,it summarizes t...The purpose of this study was to explore the application of TCM-appropriate technology in neurogenic bladder rehabilitation nursing.Firstly,the background and contents of the study were introduced.Then,it summarizes the definition and development of TCM-appropriate technology and expounds the main therapy and application of TCM-appropriate technology in the rehabilitation nursing field.Besides,the pathophysiological characteristics,rehabilitation nursing measures,and rehabilitation difficulties of the neurogenic bladder are described.Then,the application method,effect and prospect of TCM-suitable technology in rehabilitation nursing of neurogenic bladder are described.In addition,the object,method,result analysis,and conclusion of the experimental study are introduced,the main results of this study are summarized,and the future research direction is prospected.In summary,this study aims to provide effective TCM-appropriate technology for neurogenic bladder rehabilitation nursing and provide a reference for clinical practice and theoretical research in related fields.展开更多
1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-...1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-5].Understanding the rock stress state at great depths is not only an indispensable foundation for solving scientific problems associated with geology,geophysics,and geodynamics-such as plate-driving mechanisms,the earth’s energy equilibrium,earth-quake mechanisms,and tectonic activities-but also a necessary prerequisite for the evaluation,exploitation,and disposal of deep energy and resources,such as coal and metal minerals.Due to the complexity and uncertainty of the origin of in situ rock stress,it is a difficult quantity to evaluate,in comparison with other rock properties.Currently,reliable information on the stress state in a region can only be determined through field stress measurement.Therefore,a variety of stress measurement techniques have been developed and applied worldwide to provide information on crus-tal contemporary stress at specific depth ranges[6].展开更多
The laser shock processing implemented by a laser-induced high-pressure plasma which propagates into the sample as a shockwave is innovatively applied as a post-processing technique on HfO_(2)/SiO_(2) multilayer coati...The laser shock processing implemented by a laser-induced high-pressure plasma which propagates into the sample as a shockwave is innovatively applied as a post-processing technique on HfO_(2)/SiO_(2) multilayer coatings for the first time.The pure mechanical post-processing has provided evidence of a considerable promotion effect of the laser-induced damage threshold,which increased by a factor of about 4.6 with appropriate processing parameters.The promotion mechanism is confirmed to be the comprehensive modification of the intrinsic defects and the mechanical properties,which made the applicability of this novel post-processing technique on various types of coatings possible.Based on experiments,an interaction equation for the plasma pressure is established,which clarifies the existence of the critical pressure and provides a theoretical basis for selecting optimal processing parameters.In addition to the further clarification of the underlying damage mechanism,the laser shock post-processing provides a promising technique to realize the comprehensive and effective improvement of the laser-induced damage resistance of coatings.展开更多
Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and p...Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.展开更多
基金the National Natural Science Foundation of China,No.81671943
文摘BACKGROUND Axial and coronal reformations have been a widely used image post-processing protocol for the ordinary multidetector computed tomography(MDCT)examination of patients with small bowel obstruction(SBO) or other abdominal diseases. The diagnostic accuracy of MDCT for assessing SBO is expected to be further improved through the use of multiple post-processing techniques.AIM To systemically evaluate the diagnostic accuracy and efficiency of an optimized protocol using multiple post-processing techniques for MDCT assessment of SBO and secondary bowel ischemia.METHODS This retrospective cross-sectional study included 106 patients with clinically suspected SBO. Two readers applied three protocols to image post-processing and interpretation of patients' MDCT volume data. We compared the three protocols based on time spent, number of images, diagnostic self-confidence,agreement, detection rate, and accuracy of detection of SBO and secondary bowel ischemia.RESULTS Protocol 2 resulted in more time spent and number of images than protocols 1 and 3(P < 0.01), but the results of the two readers using the same protocol were not different(P > 0.05). Using protocol 3, both readers added multiple postprocessing techniques at frequencies of 29.2% and 34.9%, respectively, for obstruction cause, and 32.1% and 30.2%, respectively, for secondary bowel ischemia. Protocols 2 and 3 had higher total detection rates of obstruction cause and secondary bowel ischemia than protocol 1(P < 0.01), but no difference was detected between protocols 2 and 3(P > 0.05). The accuracy, sensitivity,specificity, positive predictive value and negative predictive value of protocols 2 and 3 were superior to those of protocol 1 for evaluating obstruction cause and secondary bowel ischemia.CONCLUSION Our optimized protocol of multiple post-processing techniques can both guarantee efficiency and improve diagnostic accuracy of MDCT for assessing SBO and secondary bowel ischemia.
文摘BACKGROUND The induced-membrane technique was initially described by Masquelet as an effective treatment for large bone defects,especially those caused by infection.Here,we report a case of chronic osteomyelitis of the radius associated with a 9 cm bone defect,which was filled with a large allogeneic cortical bone graft from a bone bank.Complete bony union was achieved after 14 months of follow-up.Previous studies have used autogenous bone as the primary bone source for the Masquelet technique;in our case,the exclusive use of allografts is as successful as the use of autologous bone grafts.With the advent of bone banks,it is possible to obtain an unlimited amount of allograft,and the Masquelet technique may be further improved based on this new way of bone grafting.CASE SUMMARY In this study,we reported a case of repair of a long bone defect in a 40-year-old male patient,which was characterized by the utilization of allograft cortical bone combined with the Masquelet technique for the treatment of the patient's long bone defect in the forearm.The patient's results of functional recovery of the forearm were surprising,which further deepens the scope of application of Masquelet technique and helps to strengthen the efficacy of Masquelet technique in the treatment of long bones indeed.CONCLUSION Allograft cortical bone combined with the Masquelet technique provides a new method of treatment to large bone defect.
基金supported by the National Fund Cultivation Project from China People’s Police University(Grant Number:JJPY202402)National Natural Science Foundation of China(Grant Number:62172165).
文摘With the rapid advancement of visual generative models such as Generative Adversarial Networks(GANs)and stable Diffusion,the creation of highly realistic Deepfake through automated forgery has significantly progressed.This paper examines the advancements inDeepfake detection and defense technologies,emphasizing the shift from passive detection methods to proactive digital watermarking techniques.Passive detection methods,which involve extracting features from images or videos to identify forgeries,encounter challenges such as poor performance against unknown manipulation techniques and susceptibility to counter-forensic tactics.In contrast,proactive digital watermarking techniques embed specificmarkers into images or videos,facilitating real-time detection and traceability,thereby providing a preemptive defense againstDeepfake content.We offer a comprehensive analysis of digitalwatermarking-based forensic techniques,discussing their advantages over passivemethods and highlighting four key benefits:real-time detection,embedded defense,resistance to tampering,and provision of legal evidence.Additionally,the paper identifies gaps in the literature concerning proactive forensic techniques and suggests future research directions,including cross-domain watermarking and adaptive watermarking strategies.By systematically classifying and comparing existing techniques,this review aims to contribute valuable insights for the development of more effective proactive defense strategies in Deepfake forensics.
文摘Lung cancer continues to be a leading cause of cancer-related deaths worldwide,emphasizing the critical need for improved diagnostic techniques.Early detection of lung tumors significantly increases the chances of successful treatment and survival.However,current diagnostic methods often fail to detect tumors at an early stage or to accurately pinpoint their location within the lung tissue.Single-model deep learning technologies for lung cancer detection,while beneficial,cannot capture the full range of features present in medical imaging data,leading to incomplete or inaccurate detection.Furthermore,it may not be robust enough to handle the wide variability in medical images due to different imaging conditions,patient anatomy,and tumor characteristics.To overcome these disadvantages,dual-model or multi-model approaches can be employed.This research focuses on enhancing the detection of lung cancer by utilizing a combination of two learning models:a Convolutional Neural Network(CNN)for categorization and the You Only Look Once(YOLOv8)architecture for real-time identification and pinpointing of tumors.CNNs automatically learn to extract hierarchical features from raw image data,capturing patterns such as edges,textures,and complex structures that are crucial for identifying lung cancer.YOLOv8 incorporates multiscale feature extraction,enabling the detection of tumors of varying sizes and scales within a single image.This is particularly beneficial for identifying small or irregularly shaped tumors that may be challenging to detect.Furthermore,through the utilization of cutting-edge data augmentation methods,such as Deep Convolutional Generative Adversarial Networks(DCGAN),the suggested approach can handle the issue of limited data and boost the models’ability to learn from diverse and comprehensive datasets.The combined method not only improved accuracy and localization but also ensured efficient real-time processing,which is crucial for practical clinical applications.The CNN achieved an accuracy of 97.67%in classifying lung tissues into healthy and cancerous categories.The YOLOv8 model achieved an Intersection over Union(IoU)score of 0.85 for tumor localization,reflecting high precision in detecting and marking tumor boundaries within the images.Finally,the incorporation of synthetic images generated by DCGAN led to a 10%improvement in both the CNN classification accuracy and YOLOv8 detection performance.
文摘Despite advancements in neuroimaging,false positive diagnoses of intracranial aneurysms remain a significant concern.This article examines the causes,prevalence,and implications of such false-positive diagnoses.We discuss how conditions like arterial occlusion with vascular stump formation and infundibular widening can mimic aneurysms,particularly in the anterior circulation.The article compares various imaging modalities,including computer tomography angiogram,magnetic resonance imaging/angiography,and digital subtraction angiogram,highlighting their strengths and limitations.We emphasize the im-portance of accurate differentiation to avoid unnecessary surgical interventions.The potential of emerging technologies,such as high-resolution vessel wall ima-ging and deep neural networks for automated detection,is explored as promising avenues for improving diagnostic accuracy.This manuscript underscores the need for continued research and clinical vigilance in the diagnosis of intracranial aneurysms.
基金the Young Investigator Group“Artificial Intelligence for Probabilistic Weather Forecasting”funded by the Vector Stiftungfunding from the Federal Ministry of Education and Research(BMBF)and the Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments。
文摘Weather forecasts from numerical weather prediction models play a central role in solar energy forecasting,where a cascade of physics-based models is used in a model chain approach to convert forecasts of solar irradiance to solar power production.Ensemble simulations from such weather models aim to quantify uncertainty in the future development of the weather,and can be used to propagate this uncertainty through the model chain to generate probabilistic solar energy predictions.However,ensemble prediction systems are known to exhibit systematic errors,and thus require post-processing to obtain accurate and reliable probabilistic forecasts.The overarching aim of our study is to systematically evaluate different strategies to apply post-processing in model chain approaches with a specific focus on solar energy:not applying any post-processing at all;post-processing only the irradiance predictions before the conversion;post-processing only the solar power predictions obtained from the model chain;or applying post-processing in both steps.In a case study based on a benchmark dataset for the Jacumba solar plant in the U.S.,we develop statistical and machine learning methods for postprocessing ensemble predictions of global horizontal irradiance(GHI)and solar power generation.Further,we propose a neural-network-based model for direct solar power forecasting that bypasses the model chain.Our results indicate that postprocessing substantially improves the solar power generation forecasts,in particular when post-processing is applied to the power predictions.The machine learning methods for post-processing slightly outperform the statistical methods,and the direct forecasting approach performs comparably to the post-processing strategies.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
文摘Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral.
文摘BACKGROUND Surgically created arterio-venous fistulas(AVFs)are the gold standard for haemodialysis access for patients with end-stage renal disease.Standard practice of AVF creation involves selecting the non-dominant upper limb and starting with most distally with radio-cephalic arterio-venous fistula.The primary patency rate of radio-cephalic arterio-venous fistula varies from 20%-25%.It has been suggested the neointimal hyperplasia at the mobilized venous segment causes stenosis of the anastomosis.Therefore,the radial artery deviation and reimplantation(RADAR)technique,in which the vein is minimally mobilized,should result in a higher success rate.AIM To compare the RADAR technique with classical technique in creation of AVF including:(1)Success rate;(2)Time to maturation;(3)Duration of surgery;and(4)Complication rate.METHODS In our study we recruited 94 patients in two randomized groups and performed the AVF by the classical method or the RADAR method.RESULTS The RADAR group had higher primary success rate(P=0.007),less rate of complications(P=0.04),shorter duration of surgery(P=0.00)and early time to maturation(0.001)when compared with the classical group.The RADAR procedure is a safe and a more efficient alternative to the current classical method of AVF creation.Longer duration of follow-up is required to assess the long-term outcomes in the future.CONCLUSION The RADAR procedure is a safe and more efficient alternative to the current classical method of AVF creation.Longer duration of follow-up is required to assess the long-term outcomes in the future.
文摘Surgical advancements have transformed colorectal cancer treatment, withcomplete mesocolic excision (CME) becoming a crucial method to guaranteeoncological safety and effectiveness. The article by Yadav emphasized the significanceof CME in attaining optimal resection margins, thorough lymph nodedissection, and enhanced long-term survival rates. The adjunctive function of D3lymphadenectomy, emphasizing the clearance of lymphatic drainage along thesupplying vessels, was also addressed. CME with central vascular ligation, basedon the principles of total mesorectal excision for rectal cancer, entails en bloc tumorresection and precise dissection along the embryological planes, thus diminishingrecurrence and improving survival rates. The viability and safety of minimallyinvasive techniques, such as laparoscopic CME, have been confirmed;however,technical difficulties remain owing to the intricate vascular anatomy. Roboticassistedsurgery presents potential benefits, including accurate lymphatic dissectionand intracorporeal anastomosis. However, evidence demonstrating itssuperiority over laparoscopic techniques is scarce owing to high costs and prolongedduration. This study promotes the global standardization of CME as anessential element of modern colorectal cancer surgery. CME epitomizes contemporaryoncological practices, requiring widespread adoption to achieve superiorityin colon cancer management.
文摘Figure 3 in the paper[Chin.Phys.B 34020701(2025)]contains an axis labeling error.The revised figure is provided.This modification does not affect the result presented in the paper.
基金Supported by Zhejiang Administration of Traditional Chinese Medicine,No.2023ZF019Natural Science Foundation of Zhejiang Province,No.(2020)56+1 种基金Cultivation of Health High-level Talents in Zhejiang Province in 2022,No.(2019)58and National Natural Science Foundation of China,No.H02710.
文摘Recently,we read a retrospective study by Chen et al,which demonstrated that electroacupuncture is highly effective in relieving pain due to rotator cuff injuries and accelerating the recovery of shoulder function,promoting repair of rotator cuff injuries.This study provides a new way to the conservative treatment of early rotator cuff injuries.In the present letter,we review the current treatment of rotator cuff injury with electroacupuncture combined with rehabilitation techniques and propose our views.
基金Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1602602 and 2023YFA1609600)the National Natural Science Foundation of China (Grant No. U23A20580)+3 种基金the open research fund of Songshan Lake Materials Laboratory (Grant No. 2022SLABFN27)Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF004)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022B1515120020)the interdisciplinary program of Wuhan National High Magnetic Field Center at Huazhong University of Science and Technology (Grant No. WHMFC202132)。
文摘Conductor materials with good mechanical performance as well as high electrical and thermal conductivities are particularly important to break through the current bottle-neck limit(~ 100 T) of pulsed magnets. Here, we perform systematic studies on the elastic properties of the Cu–6wt% Ag alloy wire, which is a promising candidate material for the new-generation pulsed magnets, by employing two independent ultrasonic techniques, i.e., resonant ultrasound spectroscopy(RUS) and ultrasound pulse-echo experiments. Our RUS measurements manifest that the elastic properties of the Cu–6wt% Ag alloy wires can be improved by an electroplastic drawing procedure as compared with the conventional cold drawing. We also take this opportunity to test the availability of our newly-built ultrasound pulse-echo facility at the Wuhan National High Magnetic Field Center(WHMFC, China), and the results suggest that the elastic performance of the electroplastically-drawn Cu–6wt% Ag alloy wire remains excellent without anomalous softening under extreme conditions,e.g., in ultra-high magnetic field up to 50 T and nitrogen or helium cryogenic liquids.
基金supported by the National Natural Science Foundation of China,Pilot Group Program of the Research Fund for International Senior Scientists(22250710676)National Natural Science Foundation of China(22078064,22378062,22304028)+1 种基金Natural Science Foundation of Fujian Province(2021J02009)Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2023-1,TF2023-8).
文摘In recent years,studies focusing on the conversion of renewable lignin-derived oxygenates(LDOs)have emphasized their potential as alternatives to fossil-based products.However,LDOs,existing as complex aromatic mixtures with diverse oxygen-containing functional groups,pose a challenge as they cannot be easily separated via distillation for direct utilization.A promising solution to this challenge lies in the efficient removal of oxygen-containing functional groups from LDOs through hydrodeoxygenation(HDO),aiming to yield biomass products with singular components.However,the high dissociation energy of the carbon-oxygen bond,coupled with its similarity to the hydrogenation energy of the benzene ring,creates a competition between deoxygenation and benzene ring hydrogenation.Considering hydrogen consumption and lignin properties,the preference is directed towards generating aromatic hydrocarbons rather than saturated components.Thus,the goal is to selectively remove oxygen-containing functional groups while preserving the benzene ring structure.Studies on LDOs conversion have indicated that the design of active components and optimization of reaction conditions play pivotal roles in achieving selective deoxygenation,but a summary of the correlation between these factors and the reaction mechanism is lacking.This review addresses this gap in knowledge by firstly summarizing the various reaction pathways for HDO of LDOs.It explores the impact of catalyst design strategies,including morphology modulation,elemental doping,and surface modification,on the adsorption-desorption dynamics between reactants and catalysts.Secondly,we delve into the application of advanced techniques such as spectroscopic techniques and computational modeling,aiding in uncovering the true active sites in HDO reactions and understanding the interaction of reactive reactants with catalyst surface-interfaces.Additionally,fundamental insights into selective deoxygenation obtained through these techniques are highlighted.Finally,we outline the challenges that lie ahead in the design of highly active and selective HDO catalysts.These challenges include the development of detection tools for reactive species with high activity at low concentrations,the study of reaction medium-catalyst interactions,and the development of theoretical models that more closely approximate real reaction situations.Addressing these challenges will pave the way for the development of efficient and selective HDO catalysts,thus advancing the field of renewable LDOs conversion.
文摘BACKGROUND Gastrointestinal submucosal tumors(SMTs)mostly grew in the lumen,but also some of the lesions were extraluminal,in which the stomach was the most co-mmon site.Gastrointestinal stromal tumor account for a large proportion of SMT.Due to the deep lesion location of gastric SMT,endoscopic submucosal dissection related techniques are difficult to operate,while endoscopic full-thickness rese-ction(EFTR)has been widely used in clinical practice because it is less invasive and can preserve the physiological structure and function of the stomach.Ho-wever,complete closure of the gastrectomy site after EFTR is critical.If the closure is incomplete,it may cause peritonitis,late perforation and other conditions,and even require further surgical intervention.Although there are currently a number of suture devices and techniques that can be used to promote closure,they have the problem of requiring additional equipment or being inconvenient to use.Although metal clips are widely used,their effectiveness depends on the size and tension of the defect.Therefore,an effective and convenient endoscopic closure technique is urgently needed to solve the closure problem of gastric SMTs after treatment.AIM To investigate the effect of combined application of the preclosure technique and dental floss traction in gastric wound closure following EFTR.METHODS In this study,the data of 94 patients treated for gastric SMTs at the Gastrointestinal Endoscopy Center of the Affiliated Union Hospital of Fujian Medical University from April 2022 to May 2023 were retrospectively analyzed.The patients were divided into a preclosure group(54 patients)and a non-preclosure group(40 patients)on the basis of the timing of wound closure with titanium clips after dental floss traction-assisted EFTR.Each patient in the preclosure group had their wounds preclosed with titanium clips after subtotal lesion resection,whereas each patient in the non-preclosure group had their wounds closed with titanium clips after total lesion resection.The lesion size,wound closure time,number of titanium clips used,incidence of postoperative complications,and postoperative hospitalization time were compared between the two groups.RESULTS The wound closure time was significantly shorter in the preclosure group than in the non-preclosure group(6.69±2.109 minutes vs 11.65±3.786 minutes,P<0.001).The number of titanium clips used was significantly lower in the preclosure group(8.93±2.231)than in the non-preclosure group(12.05±4.495)(P<0.001).There was no sig-nificant difference between the two groups in terms of the need for an indwelling gastric tube or the length of postoperative hospital stay(6.41±1.31 vs 6.13±1.06 days).For all patients in the preclosure group and the non-preclosure group,resection was completed successfully without bleeding,abdominal pain,abdominal distension,or other postoperative complications.CONCLUSION Application of the preclosure technique combined with dental floss traction can be used intraoperatively to effectively close the surgical wound in patients undergoing EFTR,reliably preventing the tumor from falling into the peritoneal cavity.
文摘BACKGROUND Congenital renal arteriovenous fistula(RAVF)is a clinically rare condition and frequently missed and misdiagnosed.Multimodal imaging techniques can pro-vide more detailed diagnostic information to help physicians more accurately diagnose and treat diseases.Combining imaging methods to diagnose RAVF has rarely been reported.CASE SUMMARY A 69-year-old female patient presented with gross hematuria that had persisted for 10 days.The patient underwent ultrasound examinations of the kidneys and renal blood vessels,enhanced computed tomography,three-dimensional com-puted tomography angiography,and digital subtraction angiography of the renal arteries.These revealed dilatation of the left renal vein and abnormal shunting between the left renal artery and vein.The patient was diagnosed with a left RAVF using combined multimodal imaging techniques.The patient was treated with left renal artery embolization immediately after renal arteriography.Hema-turia resolved following the left renal artery embolization without serious bleeding or other complications.The patient made a full recovery after one year of postoperative follow-up.CONCLUSION Multimodal imaging techniques complement each other when diagnosing RAVF,providing detailed diagnostic information that can aid in accurate diagnosis and treatment.In addition,this case reminds the sonographer to pay more attention to the color doppler flow imaging and blood flow spectrum when examining the kidney,so as to avoid misdiagnosis of renal cystic lesions as renal cysts and missed diagnosis of RAVF.
文摘The purpose of this study was to explore the application of TCM-appropriate technology in neurogenic bladder rehabilitation nursing.Firstly,the background and contents of the study were introduced.Then,it summarizes the definition and development of TCM-appropriate technology and expounds the main therapy and application of TCM-appropriate technology in the rehabilitation nursing field.Besides,the pathophysiological characteristics,rehabilitation nursing measures,and rehabilitation difficulties of the neurogenic bladder are described.Then,the application method,effect and prospect of TCM-suitable technology in rehabilitation nursing of neurogenic bladder are described.In addition,the object,method,result analysis,and conclusion of the experimental study are introduced,the main results of this study are summarized,and the future research direction is prospected.In summary,this study aims to provide effective TCM-appropriate technology for neurogenic bladder rehabilitation nursing and provide a reference for clinical practice and theoretical research in related fields.
基金financially supported by the National Key Research and Development Program of China(2022YFC3004601)the National Natural Science Foundation of China(52204084)the Science,Technology and Innovation Project of Xiongan New Area(2023XAGG0061).
文摘1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-5].Understanding the rock stress state at great depths is not only an indispensable foundation for solving scientific problems associated with geology,geophysics,and geodynamics-such as plate-driving mechanisms,the earth’s energy equilibrium,earth-quake mechanisms,and tectonic activities-but also a necessary prerequisite for the evaluation,exploitation,and disposal of deep energy and resources,such as coal and metal minerals.Due to the complexity and uncertainty of the origin of in situ rock stress,it is a difficult quantity to evaluate,in comparison with other rock properties.Currently,reliable information on the stress state in a region can only be determined through field stress measurement.Therefore,a variety of stress measurement techniques have been developed and applied worldwide to provide information on crus-tal contemporary stress at specific depth ranges[6].
基金the National Natural Science Foundation of China(NSFC)(No.11704285)the Natural Science Foundation of Zhejiang Province(No.LY20E050027)the Wenzhou Science and Technology Plan Projects(No.G20170012).
文摘The laser shock processing implemented by a laser-induced high-pressure plasma which propagates into the sample as a shockwave is innovatively applied as a post-processing technique on HfO_(2)/SiO_(2) multilayer coatings for the first time.The pure mechanical post-processing has provided evidence of a considerable promotion effect of the laser-induced damage threshold,which increased by a factor of about 4.6 with appropriate processing parameters.The promotion mechanism is confirmed to be the comprehensive modification of the intrinsic defects and the mechanical properties,which made the applicability of this novel post-processing technique on various types of coatings possible.Based on experiments,an interaction equation for the plasma pressure is established,which clarifies the existence of the critical pressure and provides a theoretical basis for selecting optimal processing parameters.In addition to the further clarification of the underlying damage mechanism,the laser shock post-processing provides a promising technique to realize the comprehensive and effective improvement of the laser-induced damage resistance of coatings.
基金Djordje Spasojevic and Svetislav Mijatovic acknowledge the support from the Ministry of Science,TechnologicalDevelopment and Innovation of the Republic of Serbia(Agreement No.451-03-65/2024-03/200162)S.J.ibid.(Agreement No.451-03-65/2024-03/200122)Bosiljka Tadic from the Slovenian Research Agency(program P1-0044).
文摘Disordered ferromagnets with a domain structure that exhibit a hysteresis loop when driven by the external magnetic field are essential materials for modern technological applications.Therefore,the understanding and potential for controlling the hysteresis phenomenon in thesematerials,especially concerning the disorder-induced critical behavior on the hysteresis loop,have attracted significant experimental,theoretical,and numerical research efforts.We review the challenges of the numerical modeling of physical phenomena behind the hysteresis loop critical behavior in disordered ferromagnetic systems related to the non-equilibriumstochastic dynamics of domain walls driven by external fields.Specifically,using the extended Random Field Ising Model,we present different simulation approaches and advanced numerical techniques that adequately describe the hysteresis loop shapes and the collective nature of the magnetization fluctuations associated with the criticality of the hysteresis loop for different sample shapes and varied parameters of disorder and rate of change of the external field,as well as the influence of thermal fluctuations and demagnetizing fields.The studied examples demonstrate how these numerical approaches reveal newphysical insights,providing quantitativemeasures of pertinent variables extracted from the systems’simulated or experimentally measured Barkhausen noise signals.The described computational techniques using inherent scale-invariance can be applied to the analysis of various complex systems,both quantum and classical,exhibiting non-equilibrium dynamical critical point or self-organized criticality.