Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-base...To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.展开更多
This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed...This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed. Then, a new probability algorithm of crossover depending on the number of generations, and a new probability algorithm of mutation depending on the fitness value are designed to solving the main conflict of the convergent speed with the global astringency. In these ways, the ICGA can prevent premature convergence and instability of genetic-catastrophic algorithms (GCA). Finally, the ICGA is applied for power system reactive power optimization and evaluated on the IEEE 14-bus power system, and the application results show that the proposed method is suitable for reactive power optimization in power system.展开更多
The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,th...The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II.展开更多
This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated...This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-II. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness.展开更多
In order to alleviate environmental pollution of Urumqi,China,a stand-alone hybrid wind / PV / battery power system was studied for this region. An accurate structure and model of the standalone hybrid wind / PV / bat...In order to alleviate environmental pollution of Urumqi,China,a stand-alone hybrid wind / PV / battery power system was studied for this region. An accurate structure and model of the standalone hybrid wind / PV / battery power system for a household in that region was presented in this study. On the basis of wind speed,solar radiation,ambient temperature,and load data,the optimal design of the hybrid system is determined using a genetic algorithm( GA). As a result,the optimal hybrid system for a household consists of one wind turbine,21. 407 6 m^2 of PV arrays,and 20. 958 kW ·h of battery bank capacity. The system has a loss of power supply probability( LPSP) of 0. 019 9 and the minimum total annualized cost is $ 35 333.展开更多
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ...This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.展开更多
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud...In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
This paper presents an proportional integral (PI) based voltage-reactive power control for wind diesel based decentralized hybrid power system with wide range of disturbances to demonstrate the compensation effect on ...This paper presents an proportional integral (PI) based voltage-reactive power control for wind diesel based decentralized hybrid power system with wide range of disturbances to demonstrate the compensation effect on system with intelligent tuning methods such as genetic algorithm (GA), artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). The effect of probabilistic load and/or input power pattern is introduced which is incorporated in MATLAB simulink model developed for the study of decentralized hybrid power system. Results show how tuning method becomes important with high percentage of probabilistic pattern in system. Testing of all tuning methods shows that GA, ANN and ANFIS can preserve optimal performances over wide range of disturbances with superiority to GA in terms of settling time using Integral of Square of Errors (ISE) criterion as fitness function.展开更多
Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and s...Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature.展开更多
A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization o...A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.展开更多
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj...The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.展开更多
Using state assignment to minimize power dissipation and area for finite state ma-chines is computationally hard. Most of published results show that the reduction of switchingactivity often trades with area penalty. ...Using state assignment to minimize power dissipation and area for finite state ma-chines is computationally hard. Most of published results show that the reduction of switchingactivity often trades with area penalty. In this paper, a new approach is proposed. Experimentalresults show a significant reduction of switching activity without area penalty compared withprevious publications.展开更多
In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, ...In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.展开更多
Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this r...Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations.展开更多
Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering ...Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.展开更多
To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which el...To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which elements of conventional mathematical optimization algorithms are combined with adaptive dynamic elements drawn from intelligent control theory. In our design, the sequential quadratic programming algorithm was first utilized to obtain an optimal solution for power distribution among multiple units. Fuzzy system was then developed to implement the optimal strategies on the basis of optimal solution. In addition, parameters of the fuzzy system were adapted via a genetic algorithm. Tbe simulation results illustrate that the methodology described is useful for a range of control system designs.展开更多
This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the co...This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the cost of generation. The combined heat and power (CHP) is a system that provides electricity and thermal energy concurrently. For its extraordinary efficiency and significant emission reduction, it is considered a promising energy prospect. The broad application of combined heat and power units requires the joint dispatch of power and heating systems, in which the modelling of combined heat and power units plays a vital role. The present research employs the genetic optimization algorithm to evaluate the cost function, heat and power dispatch values encountered in a system with simple cycle cogeneration unit and quadratic cost function. The system was first modeled to determine the various parameters of combined heat and power units towards solving its economic dispatch problem directly. In order for modelling to be done, a general structure of combined heat and power must be defined. The test system considered consists of four units: two conventional power units, one combined heat and power unit and one heat-only unit. The algorithm was applied to test system while taking into account the power and heat units, bounds of the units and feasible operation region of cogeneration unit. Output decision variables of 4-unit test systems plus cost function from Genetic Algorithm (GA), was determined using appropriate codes. The proposed algorithm produced a well spread and diverse optimal solution and also converged reasonably to the actual optimal solution in 51 iterations. The result obtained compared favourably with that obtained with the direct solution algorithm discussed in a previous paper. We conclude that the genetic algorithm is quite efficient in dealing with non-convex and constrained combined heat and power economic dispatch problem.展开更多
文摘Tis paper presents a genetic algorithm for reactive power optimization of power system in a more effective and rapid manner, and verifies the results with an IEEE 30-bus test system.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
文摘To decrease the cost of electricity generation of a residential molten carbonate fuel cell (MCFC) power system, multi-crossover genetic algorithm (MCGA), which is based on "multi-crossover" and "usefulness-based selection rule", is presented to minimize the daily fuel consumption of an experimental 10kW MCFC power system for residential application. Under the operating conditions obtained by MCGA, the operation constraints are satisfied and fuel consumption is minimized. Simulation and experimental results indicate that MCGA is efficient for the operation optimization of MCFC power systems.
文摘This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed. Then, a new probability algorithm of crossover depending on the number of generations, and a new probability algorithm of mutation depending on the fitness value are designed to solving the main conflict of the convergent speed with the global astringency. In these ways, the ICGA can prevent premature convergence and instability of genetic-catastrophic algorithms (GCA). Finally, the ICGA is applied for power system reactive power optimization and evaluated on the IEEE 14-bus power system, and the application results show that the proposed method is suitable for reactive power optimization in power system.
基金supported in part by the Natural Science Foundation of Shandong Province(ZR2021QE289)in part by State Key Laboratory of Electrical Insulation and Power Equipment(EIPE22201).
文摘The optimal allocation of integrated energy systemcapacity based on the heuristic algorithms can reduce economic costs and achieve maximum consumption of renewable energy,which has attracted many attentions.However,the optimization results of heuristic algorithms are usually influenced by the choice of hyperparameters.To solve the above problem,the particle swarm algorithm is introduced to find the optimal hyperparameters of the heuristic algorithms.Firstly,an integrated energy system consisting of the photovoltaic,wind turbine,electrolysis cell,hydrogen storage tank,and energy storage is established.Meanwhile,the minimum economic cost,the maximum wind and PV power consumption rate,and the minimum load shortage rate are considered to be the objective functions.Then,a hybrid method combined the particle swarm combined with non-dominated sorting genetic algorithms-II is proposed to solve the optimal allocation problem.According to the optimal result,the economic cost is 6.3 million RMB,and the load shortage rate is 9.83%.Finally,four comparative experiments are conducted to verify the superiority-seeking ability of the proposed method.The comparative results indicate that the proposed method possesses a strongermerit-seeking ability,resulting in a solution satisfaction rate of 87.37%,which is higher than that of the unimproved non-dominated sorting genetic algorithms-II.
文摘This study presents a robust design method for autonomous photovoltaic (PV)-wind hybrid power systems to obtain an optimum system configuration insensitive to design variable variations. This issue has been formulated as a constraint multi-objective optimization problem, which is solved by a multi-objective genetic algorithm, NSGA-II. Monte Carlo Simulation (MCS) method, combined with Latin Hypercube Sampling (LHS), is applied to evaluate the stochastic system performance. The potential of the proposed method has been demonstrated by a conceptual system design. A comparative study between the proposed robust method and the deterministic method presented in literature has been conducted. The results indicate that the proposed method can find a large mount of Pareto optimal system configurations with better compromising performance than the deterministic method. The trade-off information may be derived by a systematical comparison of these configurations. The proposed robust design method should be useful for hybrid power systems that require both optimality and robustness.
基金On-Job Doctorate Foundation of Nanjing Institute of Technology,China(No.ZKJ201401)National Natural Science Foundation of China(No.11302097)+1 种基金Postdoctoral Foundation of Jiangsu,China(No.1301060B)Jiangsu Provincial Graduate Student Innovation Project,China(No.CXZZ11_0444)
文摘In order to alleviate environmental pollution of Urumqi,China,a stand-alone hybrid wind / PV / battery power system was studied for this region. An accurate structure and model of the standalone hybrid wind / PV / battery power system for a household in that region was presented in this study. On the basis of wind speed,solar radiation,ambient temperature,and load data,the optimal design of the hybrid system is determined using a genetic algorithm( GA). As a result,the optimal hybrid system for a household consists of one wind turbine,21. 407 6 m^2 of PV arrays,and 20. 958 kW ·h of battery bank capacity. The system has a loss of power supply probability( LPSP) of 0. 019 9 and the minimum total annualized cost is $ 35 333.
文摘This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices.
基金Supported by China Postdoctoral Science Foundation(20090460873)
文摘In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
文摘This paper presents an proportional integral (PI) based voltage-reactive power control for wind diesel based decentralized hybrid power system with wide range of disturbances to demonstrate the compensation effect on system with intelligent tuning methods such as genetic algorithm (GA), artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). The effect of probabilistic load and/or input power pattern is introduced which is incorporated in MATLAB simulink model developed for the study of decentralized hybrid power system. Results show how tuning method becomes important with high percentage of probabilistic pattern in system. Testing of all tuning methods shows that GA, ANN and ANFIS can preserve optimal performances over wide range of disturbances with superiority to GA in terms of settling time using Integral of Square of Errors (ISE) criterion as fitness function.
基金supported by the National Natural Science Foundation of China(Nos.51767022 and 51575469)
文摘Dynamic Reactive Power Optimization(DRPO) is a large-scale, multi-period, and strongly coupled nonlinear mixed-integer programming problem that is difficult to solve directly. First, to handle discrete variables and switching operation constraints, DRPO is formulated as a nonlinear constrained two-objective optimization problem in this paper. The first objective is to minimize the real power loss and the Total Voltage Deviations(TVDs), and the second objective is to minimize incremental system loss. Then a Filter Collaborative State Transition Algorithm(FCSTA) is presented for solving DRPO problems. Two populations corresponding to two different objectives are employed. Moreover, the filter technique is utilized to deal with constraints. Finally, the effectiveness of the proposed method is demonstrated through the results obtained for a 24-hour test on Ward & Hale 6 bus, IEEE 14 bus, and IEEE 30 bus test power systems. To substantiate the effectiveness of the proposed algorithms, the obtained results are compared with different approaches in the literature.
基金Supported by the Natural Science Foundation of Shanxi Province Project(2012011023-2)
文摘A neural network model of key process parameters and forming quality is developed based on training samples which are obtained from the orthogonal experiment and the finite element numerical simulation. Optimization of the process parameters is conducted using the genetic algorithm (GA). The experimental results have shown that a surface model of the neural network can describe the nonlinear implicit relationship between the parameters of the power spinning process:the wall margin and amount of expansion. It has been found that the process of determining spinning technological parameters can be accelerated using the optimization method developed based on the BP neural network and the genetic algorithm used for the process parameters of power spinning formation. It is undoubtedly beneficial towards engineering applications.
基金Projects(51005115, 51005248) supported by the National Natural Science Foundation of ChinaProject(SKLMT-KFKT-201105)supported by the Visiting Scholar Foundation of State Key Laboratory of Mechanical Transmission in Chongqing University, ChinaProject(QC201101) supported by Visiting Scholar Foundation of the Automobile Engineering Key Laboratory of Jiangsu Province, China
文摘The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system.
基金Supported by NNSF of China(Key International Cooperative Project No.60010121219)
文摘Using state assignment to minimize power dissipation and area for finite state ma-chines is computationally hard. Most of published results show that the reduction of switchingactivity often trades with area penalty. In this paper, a new approach is proposed. Experimentalresults show a significant reduction of switching activity without area penalty compared withprevious publications.
文摘In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF.
文摘Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations.
文摘Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable ordering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-mental results show a substantial saving in area and power. We have also compared our techniques with other state-of-art techniques of variable ordering for OBDDs and found to give superior results.
基金Sponsored by the Indiana 21st Century Research and Technology Fund
文摘To develop efficient power control strategies for a distributed generation system in order to improve the overall system efficiency, we propose a cooperative algorithm to analyze and design the controller, in which elements of conventional mathematical optimization algorithms are combined with adaptive dynamic elements drawn from intelligent control theory. In our design, the sequential quadratic programming algorithm was first utilized to obtain an optimal solution for power distribution among multiple units. Fuzzy system was then developed to implement the optimal strategies on the basis of optimal solution. In addition, parameters of the fuzzy system were adapted via a genetic algorithm. Tbe simulation results illustrate that the methodology described is useful for a range of control system designs.
文摘This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the cost of generation. The combined heat and power (CHP) is a system that provides electricity and thermal energy concurrently. For its extraordinary efficiency and significant emission reduction, it is considered a promising energy prospect. The broad application of combined heat and power units requires the joint dispatch of power and heating systems, in which the modelling of combined heat and power units plays a vital role. The present research employs the genetic optimization algorithm to evaluate the cost function, heat and power dispatch values encountered in a system with simple cycle cogeneration unit and quadratic cost function. The system was first modeled to determine the various parameters of combined heat and power units towards solving its economic dispatch problem directly. In order for modelling to be done, a general structure of combined heat and power must be defined. The test system considered consists of four units: two conventional power units, one combined heat and power unit and one heat-only unit. The algorithm was applied to test system while taking into account the power and heat units, bounds of the units and feasible operation region of cogeneration unit. Output decision variables of 4-unit test systems plus cost function from Genetic Algorithm (GA), was determined using appropriate codes. The proposed algorithm produced a well spread and diverse optimal solution and also converged reasonably to the actual optimal solution in 51 iterations. The result obtained compared favourably with that obtained with the direct solution algorithm discussed in a previous paper. We conclude that the genetic algorithm is quite efficient in dealing with non-convex and constrained combined heat and power economic dispatch problem.