Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is als...In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased.展开更多
基于EBE-PCG(element by element-preconditioned conjugate gradient)策略的并行算法不用形成总体刚度矩阵,而且无需进行三维模型的区域分解,从而提高了并行计算的速度和效率,是实现协同优化设计的性能函数快速分析技术的有效途径。文...基于EBE-PCG(element by element-preconditioned conjugate gradient)策略的并行算法不用形成总体刚度矩阵,而且无需进行三维模型的区域分解,从而提高了并行计算的速度和效率,是实现协同优化设计的性能函数快速分析技术的有效途径。文中详细介绍有限元EBE(element by element)的运算方法,给出EBE-PCG并行算法的实现步骤,最后在网络集群环境下,综合运用多种编程语言和分析工具,实现基于EBE-PCG策略的三维有限元并行计算。计算结果表明,该并行算法的计算误差小,并行效率高,适合于性能函数的快速求解。展开更多
由于SSOR预条件共轭梯度算法中预条件方程求解需要前推和回代,导致算法迁移到GPU平台上并行效率不高.为此,基于诺依曼多项式分解技术,提出了一种GPU加速的SSOR稀疏近似逆预条件子(GSSORSAI).它不仅保持了原线性系统系数矩阵的稀疏和对...由于SSOR预条件共轭梯度算法中预条件方程求解需要前推和回代,导致算法迁移到GPU平台上并行效率不高.为此,基于诺依曼多项式分解技术,提出了一种GPU加速的SSOR稀疏近似逆预条件子(GSSORSAI).它不仅保持了原线性系统系数矩阵的稀疏和对称正定特性,而且预条件方程求解仅需一次稀疏矩阵矢量乘运算,避免了前推和回代过程.实验结果表明:在NVIDIA Tesla C2050GPU上,对比使用Python在单个CPU上SSOR稀疏近似逆预条件子实现方法,GSSORSAI平均快将近100倍;应用到并行的PCG算法中,相比无预条件的CG算法,平均提高了算法的3倍的收敛速度.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
基金With the support of the key project of Knowledge Innovation, CAS(KZCX1-y01, KZCX-SW-18), Fund of the China National Natural Sciences and the Daqing Oilfield with Grant No. 49894190
文摘In seismic data processing, blind deconvolution is a key technology. Introduced in this paper is a flow of one kind of blind deconvolution. The optimal precondition conjugate gradients (PCG) in Kyrlov subspace is also used to improve the stability of the algorithm. The computation amount is greatly decreased.
文摘基于EBE-PCG(element by element-preconditioned conjugate gradient)策略的并行算法不用形成总体刚度矩阵,而且无需进行三维模型的区域分解,从而提高了并行计算的速度和效率,是实现协同优化设计的性能函数快速分析技术的有效途径。文中详细介绍有限元EBE(element by element)的运算方法,给出EBE-PCG并行算法的实现步骤,最后在网络集群环境下,综合运用多种编程语言和分析工具,实现基于EBE-PCG策略的三维有限元并行计算。计算结果表明,该并行算法的计算误差小,并行效率高,适合于性能函数的快速求解。
文摘由于SSOR预条件共轭梯度算法中预条件方程求解需要前推和回代,导致算法迁移到GPU平台上并行效率不高.为此,基于诺依曼多项式分解技术,提出了一种GPU加速的SSOR稀疏近似逆预条件子(GSSORSAI).它不仅保持了原线性系统系数矩阵的稀疏和对称正定特性,而且预条件方程求解仅需一次稀疏矩阵矢量乘运算,避免了前推和回代过程.实验结果表明:在NVIDIA Tesla C2050GPU上,对比使用Python在单个CPU上SSOR稀疏近似逆预条件子实现方法,GSSORSAI平均快将近100倍;应用到并行的PCG算法中,相比无预条件的CG算法,平均提高了算法的3倍的收敛速度.