期刊文献+
共找到473篇文章
< 1 2 24 >
每页显示 20 50 100
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
1
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
在线阅读 下载PDF
Finite element modeling of consolidation of composite laminates 被引量:2
2
作者 Xiangqiao Yan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期62-67,共6页
Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted ... Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up. Since the quality of laminated composites is largely affected by the cure cycle, selection of an appropriate cure cycle for each application is important and must be optimized. Thus, some fundamental model of the consolidation and cure processes is necessary for selecting suitable parameters for a specific application. This article is concerned with the "flow-compaction" model during the autoclave processing of composite materials. By using a weighted residual method, two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed. Numerical examples, including comparison of the present numerical results with one-dimensional and twodimensional analytical solutions, are given to illustrate the accuracy and effectiveness of the proposed finite element formulation. In addition, a consolidation simulation of AS4/3501-6 graphite/epoxy laminate is carded out and compared with the experimental results available in the literature. 展开更多
关键词 processing flow compaction modeling finite element
在线阅读 下载PDF
A mixed finite element scheme for viscoelastic flows with XPP model 被引量:1
3
作者 Xianhong Han Xikui Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第6期671-680,共10页
A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress split... A mixed finite element formulation for viscoelastic flows is derived in this paper, in which the FIC (finite incremental calculus) pressure stabilization process and the DEVSS (discrete elastic viscous stress splitting) method using the Crank-Nicolson-based split are introduced within a general framework of the iterative version of the fractional step algorithm. The SU (streamline-upwind) method is particularly chosen to tackle the convective terms in constitutive equations of viscoelastic flows. Thanks to the proposed scheme the finite elements with equal low-order interpolation approximations for stress-velocity-pressure variables can be successfully used even for viscoelastic flows with high Weissenberg numbers. The XPP (extended Pom-Pom) constitutive model for describing viscoelastic behaviors is particularly integrated into the proposed scheme. The numerical results for the 4:1 sudden contraction flow problem demonstrate prominent stability, accuracy and convergence rate of the proposed scheme in both pressure and stress distributions over the flow domain within a wide range of the Weissenberg number, particularly the capability in reproducing the results, which can be used to explain the "die swell" phenomenon observed in the polymer injection molding process. 展开更多
关键词 Viscoelastic flow XPP model Low-order finite elements Iterative procedure Die swell
在线阅读 下载PDF
A Finite Element Model of Unsteady Cavitating Fluid Flow around a Hydrofoil
4
作者 Carlos Carbonel 《Open Journal of Modelling and Simulation》 2021年第4期414-427,共14页
<span style="font-family:Verdana;">The present study deals with the unsteady dynamics of cavitation around the NACA 0015 hydrofoil in a channel. A finite element model is proposed to solve the governin... <span style="font-family:Verdana;">The present study deals with the unsteady dynamics of cavitation around the NACA 0015 hydrofoil in a channel. A finite element model is proposed to solve the governing equations of momentum and mass conservation. Turbulent flows around the hydrofoil are described by the Prandtl-Kolmogorov model. The cavitation phenomenon is modeled through a mixture model involving liquid and vapor flows and the Zwart-Gerber-Belamri (ZGB) model is considered to evaluate the transport of the water vapor fraction. The variational finite element model formulation includes the mixing of the characteristic method and the finite element. Also, at the open sides of the channel flow, an open boundary condition is imposed. Numerical experiments are performed for cavitation numbers 0.8 and 0.4. The presented model predicts the essential features of unsteady cavitating flows, the generation of vapor cavities, the time-dependent oscillations of the variables and the presence of vortical flow structures associated to vapor volume concentrations during the shedding process.</span> 展开更多
关键词 CAVITATION finite elements HYDROFOIL Unsteady flows Zwart-Gerber-Belamri Model
在线阅读 下载PDF
Finite Element Simulation of Radial Tire Building and Shaping Processes Using an Elasto-Viscoplastic Model 被引量:1
5
作者 Yinlong Wang Zhao Li +1 位作者 Ziran Li Yang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1187-1208,共22页
The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga... The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects. 展开更多
关键词 Uncured rubber constitutive modeling radial tire building process finite element method
在线阅读 下载PDF
Densification simulation of compacted Al powders using multi-particle finite element method 被引量:2
6
作者 Kyung-Hun LEE Jung-Min LEE Byung-Min KIM 《中国有色金属学会会刊:英文版》 CSCD 2009年第B09期68-75,共8页
The powder compaction simulations were performed to demonstrate deformation behavior of particles and estimate the effect of different punch speeds and particle diameters on the relative density of powder by a multi-p... The powder compaction simulations were performed to demonstrate deformation behavior of particles and estimate the effect of different punch speeds and particle diameters on the relative density of powder by a multi-particle finite element model(MPFEM). Individual particle discretized with a finite element mesh allows for a full description of the contact mechanics. In order to verify the reliability of compaction simulation by MPFEM, the compaction tests of porous aluminum with average particle size of 20 μm and 3 μm were performed at different ram speeds of 5, 15, 30 and 60 mm/min by MTS servo-hydraulic tester. The results show that the slow ram speed is of great advantage for powder densification in low compaction force due to sufficient particle rearrangement and compaction force increases with decrease in average particle size of aluminum. 展开更多
关键词 粉末压实 粉末粒子 多孔铝 有限元法 模拟 致密化 平均粒径 有限元模型
在线阅读 下载PDF
Numerical modeling and simulation of metal powder compaction of balancer 被引量:1
7
作者 李元元 陈普庆 +2 位作者 夏伟 周照耀 李文芳 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第3期507-510,共4页
The constitutive relation of powder material was derived based on the assumption that metal powder is a kind of elasto-plastic material, complying with an elliptical yield criterion. The constitutive integration algor... The constitutive relation of powder material was derived based on the assumption that metal powder is a kind of elasto-plastic material, complying with an elliptical yield criterion. The constitutive integration algorithm was discussed. A way to solve the elastic strain increment in each iteration step during elasto-plastic transition stage was formulated. Different integration method was used for elastic and plastic strain. The relationship between model parameters and relative density was determined through experiments. The model was implemented into user-subroutines of Marc. With the code, computer simulations for compaction process of a balancer were performed. The part is not axisymmetric and requires two lower punches and one upper punch to form. The relative density distributions of two design cases, in which different initial positions of the punches were set, were obtained and compared. The simulation results indicate the influence of punch position and movement on the density distribution of the green compacts. 展开更多
关键词 粉末压制 数值模拟 有限元 平衡装置 力学模型
在线阅读 下载PDF
Clinical Data-Driven Finite Element Analysis of the Kinetics of Chewing Cycles in Order to Optimize Occlusal Reconstructions Dedicated to Professor Karl Stark Pister for his 95th birthday
8
作者 Simon Martinez Jurgen Lenz +6 位作者 Hans Schindler Willi Wendler Stefan Rues Karl Schweizerhof Sophia Terebesi Nikolaos Nikitas Giannakopoulos Marc Schmitter 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1259-1281,共23页
The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particula... The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particular,to produce interference-free yet chewing-efficient dental restorations.For this,kinetic data must be available,i.e.,movements and deformations under the influence of forces and stresses.In the present study,so-called functional data were collected from healthy volunteers to provide consistent information for proper kinetics.For the latter purpose,biting and chewing forces,electrical muscle activity and jaw movements were registered synchronously,and individual magnetic resonance tomograms(MRI)were prepared.The acquired data were then added to a large complex finite element model of the complete masticatory system using the functional information obtained and individual anatomical geometries so that the kinetics of the chewing process and teeth grinding could be realistically simulated.This allows developing algorithms that optimize computer-aided manufacturing of dental prostheses close to occlusion.In this way,a failure-free function of the dental prosthesis can be guaranteed and its damage during usage can be reduced or prevented even including endosseous implants. 展开更多
关键词 Occlusal design mechanical simulations of mandibular movement finite element model of the complete masticatory system simulation of chewing process and teeth grinding
在线阅读 下载PDF
On Numerical Modelling of Industrial Powder Compaction Processes for Large Deformation of Endochronic Plasticity at Finite Strains
9
作者 A R Khoei A Bakhshiani M Mofid 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期95-96,共2页
Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the c... Compaction processes are one the most important par ts of powder forming technology. The main applications are focused on pieces for a utomotive, aeronautic, electric and electronic industries. The main goals of the compaction processes are to obtain a compact with the geometrical requirements, without cracks, and with a uniform distribution of density. Design of such proc esses consist, essentially, in determine the sequence and relative displacements of die and punches in order to achieve such goals. A.B. Khoei presented a gener al framework for the finite element simulation of powder forming processes based on the following aspects; a large displacement formulation, centred on a total and updated Lagrangian formulation; an adaptive finite element strategy based on error estimates and automatic remeshing techniques; a cap model based on a hard ening rule in modelling of the highly non-linear behaviour of material; and the use of an efficient contact algorithm in the context of an interface element fo rmulation. In these references, the non-linear behaviour of powder was adequately desc ribed by the cap plasticity model. However, it suffers from a serious deficiency when the stress-point reaches a yield surface. In the flow theory of plasticit y, the transition from an elastic state to an elasto-plastic state appears more or less abruptly. For powder material it is very difficult to define the locati on of yield surface, because there is no distinct transition from elastic to ela stic-plastic behaviour. Results of experimental test on some hard met al powder show that the plastic effects were begun immediately upon loading. In such mater ials the domain of the yield surface would collapse to a point, so making the di rection of plastic increment indeterminate, because all directions are normal to a point. Thus, the classical plasticity theory cannot deal with such materials and an advanced constitutive theory is necessary. In the present paper, the constitutive equations of powder materials will be discussed via an endochronic theory of plasticity. This theory provides a unifi ed point of view to describe the elastic-plastic behaviour of material since it places no requirement for a yield surface and a ’loading function’ to disting uish between loading an unloading. Endochronic theory of plasticity has been app lied to a number of metallic materials, concrete and sand, but to the knowledge of authors, no numerical scheme of the model has been applied to powder material . In the present paper, a new approach is developed based on an endochronic rate independent, density-dependent plasticity model for describing the isothermal deformation behavior of metal powder at low homologous temperature. Although the concept of yield surface has not been explicitly assumed in endochronic theory, it is shown that the cone-cap plasticity yield surface (Fig.1), which is the m ost commonly used plasticity models for describing the behavior of powder materi al can be easily derived as a special case of the proposed endochronic theory. Fig.1 Trace of cone-cap yield function on the meridian pl ane for different relative density As large deformation is observed in powder compaction process, a hypoelastic-pl astic formulation is developed in the context of finite deformation plasticity. Constitutive equations are stated in unrotated frame of reference that greatly s implifies endochronic constitutive relation in finite plasticity. Constitutive e quations of the endochronic theory and their numerical integration are establish ed and procedures for determining material parameters of the model are demonstra ted. Finally, the numerical schemes are examined for efficiency in the model ling of a tip shaped component, as shown in Fig.2. Fig.2 A shaped tip component. a) Geometry, boundary conditio n and finite element mesh; b) density distribution at final stage of 展开更多
关键词 In On Numerical Modelling of Industrial Powder compaction Processes for Large Deformation of Endochronic Plasticity at finite Strains
在线阅读 下载PDF
Three-dimensional simulation of pore scale fluid flow in granular ore media with realistic geometry 被引量:5
10
作者 杨保华 吴爱祥 +2 位作者 王春来 牛文鑫 刘金枝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3081-3086,共6页
The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore st... The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process. 展开更多
关键词 granular ore medium heap leaching computed tomography pore-scale fluid flow 3D finite element model
在线阅读 下载PDF
双层热定型机碳纤维增强衬套的损伤分析及成型工艺优化
11
作者 满其祥 岳晓丽 《东华大学学报(自然科学版)》 北大核心 2025年第1期131-139,共9页
针对双层热定型机中碳纤维增强的薄壁衬套,在复杂的湿热环境及交变机械力载荷下易发生损伤失效的问题,深入探讨注塑成型过程中形成的翘曲变形对其服役期间损伤进程的影响。结果显示:随着衬套边缘翘曲量的增加,碳纤维衬套从初始损伤至完... 针对双层热定型机中碳纤维增强的薄壁衬套,在复杂的湿热环境及交变机械力载荷下易发生损伤失效的问题,深入探讨注塑成型过程中形成的翘曲变形对其服役期间损伤进程的影响。结果显示:随着衬套边缘翘曲量的增加,碳纤维衬套从初始损伤至完全失效的时间显著缩短,损伤进程加速;衬套失效时的残余强度减弱,承载能力下降。基于上述原因,构建衬套成型过程的有限元模型,并通过实测数据进行验证;分析不同工艺参数对衬套翘曲与收缩的影响,进而建立成型工艺参数的代理模型及多目标优化模型,以确定最优工艺参数组合。数值模拟结果表明:工艺参数优化后,衬套的翘曲量降低36.4%,相对失效时间延长22.8%,有效延缓了损伤进程,有利于延长衬套的服役寿命。这一成果可为同类复合材料薄壁件的成型工艺制定提供重要的指导和参考。 展开更多
关键词 损伤分析 成型工艺优化 翘曲 有限元模型 近似模型
在线阅读 下载PDF
Conventional and micro scale finite element modeling for metal cutting process:A review 被引量:3
12
作者 Le WANG Caixu YUE +3 位作者 Xianli LIU Ming LI Yongshi XU Steven Y.LIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期199-232,共34页
The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are comple... The metal cutting process is accompanied by complex stress field,strain field,temperature field.The comprehensive effects of process parameters on chip morphology,cutting force,tool wear and residual stress are complex and inter-connected.Finite element method(FEM)is considered as an effective method to predict process variables and reveal microscopic physical phenomena in the cutting process.Therefore,the finite element(FE)simulation is used to research the conventional and micro scale cutting process,and the differences in the establishment of process variable FE simulation models are distinguished,thereby improving the accuracy of FE simulation.The reliability and effectiveness of FE simulation model largely depend on the accuracy of the simulation method,constitutive model,friction model,damage model in describing mesh element,the dynamic mechanical behavior of materials,the tool-chip-workpiece contact process and the chip formation mechanism.In this paper,the FE models of conventional and micro process variables are comprehensively and up-to-date reviewed for different materials and machining methods.The purpose is to establish a FE model that is more in line with the real cutting conditions,and to provide the possibility for optimizing the cutting process variables.The development direction of FE simulation of metal cutting process is discussed,which provides guidance for future cutting process modeling. 展开更多
关键词 Conventional and micro scale finite element simulation Metal cutting process Micro cutting modeling
原文传递
大尺寸直拉硅单晶生长的多物理场建模与优化
13
作者 林海鑫 高德东 +3 位作者 王珊 张振忠 安燕 张文永 《人工晶体学报》 北大核心 2025年第1期17-33,共17页
随着光伏和半导体行业的快速发展,制备更大直径(12英寸及以上,1英寸=2.54 cm)的硅单晶成为趋势,直拉法作为硅单晶最主要的制备方法备受重视。然而在制备大直径和高质量的直拉硅单晶的过程中,随着晶体直径和坩埚尺寸的增加,熔体体积显著... 随着光伏和半导体行业的快速发展,制备更大直径(12英寸及以上,1英寸=2.54 cm)的硅单晶成为趋势,直拉法作为硅单晶最主要的制备方法备受重视。然而在制备大直径和高质量的直拉硅单晶的过程中,随着晶体直径和坩埚尺寸的增加,熔体体积显著增加,热场、流场及应力场的复杂性显著提升,涡流、热浮力和科里奥利力的相互作用会造成熔体流动的强烈湍流和速度、温度波动,出现诸如固液界面温度分布不均,熔体内热对流复杂等问题,从而影响硅单晶中的缺陷分布。因此,如何实现对工艺参数的控制,以获得理想的大直径硅晶体具有重要的研究意义。本文针对实际生产的滞后性和成本问题,建立了可以实时预测、动态控制和优化工艺参数的40英寸热场制备18英寸硅单晶棒的二维轴对称全局数值模拟模型,考虑了坩埚深度及热传导路径的延长,在主加热器的基础上,增加底部加热器,采用有限元法逐一分析晶体转速、坩埚转速、气体压强的变化对单晶硅热场和硅晶体生长的影响,包括固液界面形状、温度梯度、V/G值、氧浓度及缺陷分布等。通过多次仿真实验,获得了一组较为合适的工艺参数组合:晶体转速15 r/min、坩埚转速5 r/min、炉内气压1200 Pa,可使固液界面温度梯度较小,且温度分布更加均匀,有效避免了过度湍流化。进一步采用制备18英寸硅单晶棒的验证实验及性能检测发现,采用仿真所得最优工艺参数组合生产的硅单晶棒能将成晶率提升至87.44%。这组针对18英寸硅单晶棒的最佳工艺参数组合(包括晶体转速、坩埚转速及炉内气压等)经过精细优化,主要基于大尺寸(12英寸及以上)直拉硅单晶生长过程中热场和流场的复杂性,对大尺寸硅单晶具有较好的适应性,但在更小尺寸(如4、6或8英寸)的硅单晶生长中,由于热传递和气流扰动的不同,最佳工艺参数组合可以作为参考,但还需要进行具体条件下的验证和调整。本研究建立的数字化模型能够准确预测并优化大尺寸直拉硅单晶的生长过程,提质降本,具有实际应用前景。 展开更多
关键词 硅单晶 直拉法 二维轴对称 有限元法 工艺参数 数值模拟 数字化模型
在线阅读 下载PDF
Centrifuge modelling of dry granular run-out processes under deflective Coriolis condition
14
作者 Bei Zhang Yandong Bi Yu Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1227-1239,共13页
Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective... Coriolis effects,encompassing the dilative,compressive,and deflective manifestations,constitute pivotal considerations in the centrifugal modelling of high-speed granular run-out processes.Notably,under the deflective Coriolis condition,the velocity component parallel to the rotational axis exerts no influence on the magnitude of Coriolis acceleration.This circumstance implies a potential mitigation of the Coriolis force's deflective impact.Regrettably,extant investigations predominantly emphasize the dilative and compressive Coriolis effects,largely neglecting the pragmatic import of the deflective Coriolis condition.In pursuit of this gap,a series of discrete element method(DEM)simulations have been conducted to scrutinize the feasibility of centrifugal modelling for dry granular run-out processes under deflective Coriolis conditions.The findings concerning the deflective Coriolis effect reveal a consistent rise in the run-out distance by 2%–16%,a modest increase in bulk flow velocity of under 4%,and a slight elevation in average flow depth by no more than 25%.These alterations display smaller dependence on the specific testing conditions due to the granular flow undergoing dual deflections in opposing directions.This underscores the significance and utility of the deflective Coriolis condition.Notably,the anticipated reduction in error in predicting the final run-out distance is substantial,potentially reaching a 150%improvement compared to predictions made under the dilative and compressive Coriolis conditions.Therefore,the deflective Coriolis condition is advised when the final run-out distance of the granular flow is the main concern.To mitigate the impact of Coriolis acceleration,a greater initial height of the granular column is recommended,with a height/width ratio exceeding 1,as the basal friction of the granular material plays a crucial role in mitigating the deflective Coriolis effect.For more transverse-uniform flow properties,the width of the granular column should be as large as possible. 展开更多
关键词 Centrifuge modelling Granular flow Run-out process Deflective coriolis condition Discrete element modelling
在线阅读 下载PDF
某抽水蓄能电站下水库混凝土重力坝渗流计算及防渗优化分析
15
作者 冯先伟 高东红 +1 位作者 田金波 李皓璇 《水电能源科学》 北大核心 2025年第1期108-111,78,共5页
大坝防渗措施不当会增加坝基渗漏量,增大坝体扬压力,对坝体稳定造成不利影响,同时防渗工程投资占比较大,需合理布置工程防渗方案。依托某抽水蓄能电站下水库混凝土重力坝坝址区工程的实际情况,建立了三维有限元模型,分析了防渗设计方案... 大坝防渗措施不当会增加坝基渗漏量,增大坝体扬压力,对坝体稳定造成不利影响,同时防渗工程投资占比较大,需合理布置工程防渗方案。依托某抽水蓄能电站下水库混凝土重力坝坝址区工程的实际情况,建立了三维有限元模型,分析了防渗设计方案下坝址区渗流场分布性态及各部位渗透坡降和渗透流量等要素,研究了延伸坝肩帷幕长度、加深帷幕底线和帷幕双排布置中的单因素和多因素作用对坝址区渗透流量的影响,并依据分析结果对设计防渗方案进行优化。结果表明,设计防渗方案渗控效果明显,坝址区防渗帷幕渗透坡降和坝基各部位渗透流量均小于允许值;综合工程经济性和防渗控制效果,采用拦河坝和拦沙坝帷幕底线整体加深1/3方案对防渗系统的优化措施最优。 展开更多
关键词 混凝土重力坝 三维有限元模型 防渗帷幕 渗透流量 优化分析
在线阅读 下载PDF
NUMERICAL SIMULATION OF MORPHOLOGY OF POLYMER CHAIN COILS IN COMPLEX FLOWS 被引量:4
16
作者 Hong Zheng Wei Yu Chi-xing Zhou Department of Polymer Materials Science & Engineering,Shanghai Jiaotong University,Shanghai 200240,China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第5期453-462,共10页
A new coupled finite element formulation is proposed to calculate a conformation tensor model in two complex flows: a planar contraction flow and a planar flow around a symmetrically placed cylinder. The components o... A new coupled finite element formulation is proposed to calculate a conformation tensor model in two complex flows: a planar contraction flow and a planar flow around a symmetrically placed cylinder. The components of conformation tensor are first computed together with the velocity and pressure to describe the change of morphology of polymer chain coils in flow fields. Macroscopic quantities of viscoelastic flow are then calculated based on the conformation tensor. Comparisons between the numerical simulations and experiments for stress patterns and velocity profiles are carried out to prove the validity of the method. 展开更多
关键词 Viscoelastic flow MORPHOLOGY Complex flows Conformation tensor model finite element method (FEM).
在线阅读 下载PDF
Modeling of microstructure evolution of AZ80 magnesium alloy during hot working process using a unified internal state variable method 被引量:6
17
作者 Zexing Su Chaoyang Sun +2 位作者 Mingjia Wang Lingyun Qian Xintong Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期299-313,共15页
In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the in... In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy. 展开更多
关键词 AZ80 magnesium alloy Internal state variable model Microstructure evolution Dynamic recrystallization Hot working process finite element simulation
在线阅读 下载PDF
A novel method of rapidly modeling optical properties of actual photonic crystal fibres 被引量:2
18
作者 王立文 娄淑琴 +1 位作者 陈卫国 李宏雷 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期1-7,共7页
The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical ... The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. 展开更多
关键词 photonic crystal fibre digital image processing finite element method modeling optical properties
在线阅读 下载PDF
Development of Flow Stress of AISI H13 Die Steel in Hard Machining 被引量:2
19
作者 闫洪 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期187-190,共4页
An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stre... An approach was presented to characterize the stress response of workpiece in hard machining, accounting for the effect of the initial workpiece hardness in addition to temperature, strain and strain rate on flow stress in this paper. AISI H13 die steel was chosen to verify this methodology. The proposed flow stress model demonstrates a good agreement with experimental data. Therefore, the proposed model can be used to predict the corresponding flow stress-strain response ofAISl H13 die steel with variation of the initial workpiece hardness in hard machining. 展开更多
关键词 flow stress hard machining finite element modeling AISI H13 die steel
在线阅读 下载PDF
Real-time determination of sandy soil stiffness during vibratory compaction incorporating machine learning method for intelligent compaction 被引量:2
20
作者 Zhengheng Xu Hadi Khabbaz +1 位作者 Behzad Fatahi Di Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1609-1625,共17页
An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time asse... An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time assessment of uniformity of the compacted area, accurate determination of the soil stiffness required for quality control and design remains challenging. In this paper, a novel and advanced numerical model simulating the interaction of vibratory drum and soil beneath is developed. The model is capable of evaluating the nonlinear behaviour of underlying soil subjected to dynamic loading by capturing the variations of damping with the cyclic shear strains and degradation of soil modulus. The interaction of the drum and the soil is simulated via the finite element method to develop a comprehensive dataset capturing the dynamic responses of the drum and the soil. Indeed, more than a thousand three-dimensional(3D) numerical models covering various soil characteristics, roller weights, vibration amplitudes and frequencies were adopted. The developed dataset is then used to train the inverse solver using an innovative machine learning approach, i.e. the extended support vector regression, to simulate the stiffness of the compacted soil by adopting drum acceleration records. Furthermore, the impacts of the amplitude and frequency of the vibration on the level of underlying soil compaction are discussed.The proposed machine learning approach is promising for real-time extraction of actual soil stiffness during compaction. Results of the study can be employed by practising engineers to interpret roller drum acceleration data to estimate the level of compaction and ground stiffness during compaction. 展开更多
关键词 Intelligent compaction Machine learning method finite element modelling Acceleration response
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部