工业应用中,动态多变的流式数据特性使强化学习算法在训练过程中很难在模型收敛性与知识遗忘之间实现很好的平衡。考虑工业现场内容请求与当前生产任务具有高度相关性,提出一种基于集成深度Q网络算法(Integrated Deep Q-Network,IDQN)...工业应用中,动态多变的流式数据特性使强化学习算法在训练过程中很难在模型收敛性与知识遗忘之间实现很好的平衡。考虑工业现场内容请求与当前生产任务具有高度相关性,提出一种基于集成深度Q网络算法(Integrated Deep Q-Network,IDQN)的自适应缓存策略。算法在离线阶段利用不同历史任务数据,训练并保存多个历史任务模型。在线阶段每当检测到实时数据流的任务特征发生变化,则重新训练网络模型。如果实时数据流的特征隶属于历史任务,则向深度Q网络(Deep Q-Network,DQN)导入相应的历史任务模型进行网络训练。否则直接利用实时数据流训练并标记为新的任务模型。仿真实验结果表明,IDQN与参考算法相比,在内容请求流行度动态变化时能够有效减少模型收敛时间,提高缓存效率。展开更多
The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi...The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.展开更多
通过优化地铁时刻表可有效降低地铁牵引能耗。为解决客流波动和车辆延误对实际节能率影响的问题,提出列车牵引和供电系统实时潮流计算分析模型和基于Dueling Deep Q Network(Dueling DQN)深度强化学习算法相结合的运行图节能优化方法,...通过优化地铁时刻表可有效降低地铁牵引能耗。为解决客流波动和车辆延误对实际节能率影响的问题,提出列车牵引和供电系统实时潮流计算分析模型和基于Dueling Deep Q Network(Dueling DQN)深度强化学习算法相结合的运行图节能优化方法,建立基于区间动态客流概率统计的时刻表迭代优化模型,降低动态客流变化对节能率的影响。对预测Q网络和目标Q网络分别选取自适应时刻估计和均方根反向传播方法,提高模型收敛快速性,同时以时刻表优化前、后总运行时间不变、乘客换乘时间和等待时间最小为优化目标,实现节能时刻表无感切换。以苏州轨道交通4号线为例验证方法的有效性,节能对比试验结果表明:在到达换乘站时刻偏差不超过2 s和列车全周转运行时间不变的前提下,列车牵引节能率达5.27%,车公里能耗下降4.99%。展开更多
文摘工业应用中,动态多变的流式数据特性使强化学习算法在训练过程中很难在模型收敛性与知识遗忘之间实现很好的平衡。考虑工业现场内容请求与当前生产任务具有高度相关性,提出一种基于集成深度Q网络算法(Integrated Deep Q-Network,IDQN)的自适应缓存策略。算法在离线阶段利用不同历史任务数据,训练并保存多个历史任务模型。在线阶段每当检测到实时数据流的任务特征发生变化,则重新训练网络模型。如果实时数据流的特征隶属于历史任务,则向深度Q网络(Deep Q-Network,DQN)导入相应的历史任务模型进行网络训练。否则直接利用实时数据流训练并标记为新的任务模型。仿真实验结果表明,IDQN与参考算法相比,在内容请求流行度动态变化时能够有效减少模型收敛时间,提高缓存效率。
基金supported by the Universiti Tunku Abdul Rahman (UTAR) Malaysia under UTARRF (IPSR/RMC/UTARRF/2021-C1/T05)
文摘The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.