提出了一种新的启发式遗传算法以求解基于非精确状态信息的QoS组播路由选择问题.该算法以基于非精确状态信息的单播QoS路由算法PC-ISI(premise-controlled,inaccurate state information)为基础,将基于非精确状态信息的QoS组播路由问题...提出了一种新的启发式遗传算法以求解基于非精确状态信息的QoS组播路由选择问题.该算法以基于非精确状态信息的单播QoS路由算法PC-ISI(premise-controlled,inaccurate state information)为基础,将基于非精确状态信息的QoS组播路由问题与遗传算法有机结合,通过初始群体的筛选、自适应罚函数的运用以及启发式交叉和变异等一系列策略,能有效地提高算法的搜索能力和收敛速度.仿真实验也说明该算法性能良好.展开更多
为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,...为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,计算路径代价,将路径代价最小作为优化目标,建立QoS组播路由优化模型,并设置相关约束条件;最后,结合遗传算法和蚁群算法提出一种遗传-蚁群优化算法求解上述模型,输出最优路径,完成路由优化。实验结果表明,所提算法可有效降低路径长度与路径代价,提高搜索效率与路由请求成功率,优化后的路由时延抖动较小。展开更多
文摘提出了一种新的启发式遗传算法以求解基于非精确状态信息的QoS组播路由选择问题.该算法以基于非精确状态信息的单播QoS路由算法PC-ISI(premise-controlled,inaccurate state information)为基础,将基于非精确状态信息的QoS组播路由问题与遗传算法有机结合,通过初始群体的筛选、自适应罚函数的运用以及启发式交叉和变异等一系列策略,能有效地提高算法的搜索能力和收敛速度.仿真实验也说明该算法性能良好.
文摘为了提高网络路由性能,提出并设计了一种基于遗传-蚁群优化算法的服务质量(quality of service,QoS)组播路由算法。首先,设计了自适应变频采集策略用于采集网络与节点信息,以此获得网络和节点的状态,为后续路由优化提供数据支持;其次,计算路径代价,将路径代价最小作为优化目标,建立QoS组播路由优化模型,并设置相关约束条件;最后,结合遗传算法和蚁群算法提出一种遗传-蚁群优化算法求解上述模型,输出最优路径,完成路由优化。实验结果表明,所提算法可有效降低路径长度与路径代价,提高搜索效率与路由请求成功率,优化后的路由时延抖动较小。