City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordi...City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.展开更多
An appropriate spatial structure of a power battery supply network is crucial for the specialization and scale development of key components in new energy vehicles, accelerating the transformation and upgrade of the i...An appropriate spatial structure of a power battery supply network is crucial for the specialization and scale development of key components in new energy vehicles, accelerating the transformation and upgrade of the industry. This paper investigates the cooperative relationships among supply chain enterprises from the perspective of complex networks.Employing methodologies such as the gravity model and Moran's I analysis, it explores the spatial structural characteristics and correlation patterns of the power battery supply network in China and discusses the influencing factors using the quadratic assignment procedure,revealing the mechanisms behind the differences in the spatial distributions of the power battery supply network. The results indicate that the distribution of power battery enterprises is densely concentrated in the eastern and southern regions, whereas the western region has a sparse distribution. The spatial supply network consists of a four-tier linkage system, encompassing 135 prefecture-level cities, with Chongqing, Shanghai, Nanjing, and other cities particularly prominent. Overall, the degree of agglomeration is low, with coastal cities dominating the landscape and inland cities serving as complementary regions. Most areas are characterized as insignificant or low-high regions, and the regional linkage effect of core cities is not pronounced. There is a notable lack of significance and high spatial heterogeneity.Four types of factors—spatial factors, market factors, agglomeration economies, and innovation levels—jointly influence and shape the spatial structure of the power battery supply network.展开更多
基金Under the auspices of the National Natural Science Foundation of China (No.72273151)。
文摘City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.
基金Humanities and Social Sciences Project of the Ministry of Education of China,No.23YJCZH195Scientific Research Program funded by the Shaanxi Provincial Education Department,No.20JK0358, No.21JK0908+2 种基金Natural Science Basic Research Program of Shaanxi,No.2024JC-YBQN-0738, No.2023-JC-QN-0560Shaanxi Provincial Education Science Planning Project,No.SGH23Y2484China Logistics Society&China Federation of Logistics and Purchasing Research Fund,No.2023CSLKT3-220。
文摘An appropriate spatial structure of a power battery supply network is crucial for the specialization and scale development of key components in new energy vehicles, accelerating the transformation and upgrade of the industry. This paper investigates the cooperative relationships among supply chain enterprises from the perspective of complex networks.Employing methodologies such as the gravity model and Moran's I analysis, it explores the spatial structural characteristics and correlation patterns of the power battery supply network in China and discusses the influencing factors using the quadratic assignment procedure,revealing the mechanisms behind the differences in the spatial distributions of the power battery supply network. The results indicate that the distribution of power battery enterprises is densely concentrated in the eastern and southern regions, whereas the western region has a sparse distribution. The spatial supply network consists of a four-tier linkage system, encompassing 135 prefecture-level cities, with Chongqing, Shanghai, Nanjing, and other cities particularly prominent. Overall, the degree of agglomeration is low, with coastal cities dominating the landscape and inland cities serving as complementary regions. Most areas are characterized as insignificant or low-high regions, and the regional linkage effect of core cities is not pronounced. There is a notable lack of significance and high spatial heterogeneity.Four types of factors—spatial factors, market factors, agglomeration economies, and innovation levels—jointly influence and shape the spatial structure of the power battery supply network.