The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dlmensional space-time. Moreover, the quantum probability of tra...The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dlmensional space-time. Moreover, the quantum probability of transition between two duality universe is calculated through a Wheeler-De Witt approach.展开更多
This paper proposes an innovative approach to social science research based on quantum theory,integrating quantum probability,quantum game theory,and quantum statistical methods into a comprehensive interdisciplinary ...This paper proposes an innovative approach to social science research based on quantum theory,integrating quantum probability,quantum game theory,and quantum statistical methods into a comprehensive interdisciplinary framework for both theoretical and empirical investigation.The study elaborates on how core quantum concepts such as superposition,interference,and measurement collapse can be applied to model social decision making,cognition,and interactions.Advanced quantum computational methods and algorithms are employed to transition from theoretical model development to simulation and experimental validation.Through case studies in international relations,economic games,and political decision making,the research demonstrates that quantum models possess significant advantages in explaining irrational and context-dependent behaviors that traditional methods often fail to capture.The paper also explores the potential applications of quantum social science in policy formulation and public decision making,addresses the ethical,privacy,and social equity challenges posed by quantum artificial intelligence,and outlines future research directions at the convergence of quantum AI,quantum machine learning,and big data analytics.The findings suggest that quantum social science not only offers a novel perspective for understanding complex social phenomena but also lays the foundation for more accurate and efficient systems in social forecasting and decision support.展开更多
In this paper, an attempt is made to synthesize fuzzy mathematics and quantum mechanics. By using the method of fuzzy mathematics to blur the probability (wave) of quantum mechanics, the concept of fuzzy wave function...In this paper, an attempt is made to synthesize fuzzy mathematics and quantum mechanics. By using the method of fuzzy mathematics to blur the probability (wave) of quantum mechanics, the concept of fuzzy wave function is put forward to describe the fuzzy quantum probability. By applying the non-fuzzy formula of fuzzy quantity and Schrödinger wave equation of quantum mechanics, the membership function equation is established to describe the evolution of the fuzzy wave function. The concept of membership degree amplitude is introduced to calculate fuzzy probability amplitude. Some important concepts in fuzzy mathematics are also illustrated.展开更多
The quantum probability theory of fuzzy event is suggested by using the idea and method of fuzzy mathematics, giving the form of fuzzy event path integral, membership degree amplitude, fuzzy field function, Green func...The quantum probability theory of fuzzy event is suggested by using the idea and method of fuzzy mathematics, giving the form of fuzzy event path integral, membership degree amplitude, fuzzy field function, Green function, physical quantity and fuzzy diagram. This theory reforms quantum mechanics, making the later become its special case. This theory breaks unitarity, gauge invariance, probability conservation and information conservation, making these principles become approximate ones under certain conditions. This new theory, which needs no renormalization and can naturally give meaningful results which are in accordance with the experiments, is the proper theory to describe microscopic high-speed phenomenon, whereas quantum mechanics is only a proper theory to describe microscopic low-speed phenomenon. This theory is not divergent under the condition of there being no renormalization and infinitely many offsetting terms, thereby it can become the theoretical framework required for the quantization of gravity.展开更多
Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer q...Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.展开更多
In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;...In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>č</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span>展开更多
With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited st...With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited states(GFES) in a RbCl crystal asymmetric Gaussian potential quantum well(AGPQW).It concludes:(i) Twoenergy-level of the AGPQW may be seen as a qubit.(ii) When the electron located in the superposition state of the two-energy-level system,the time evolution and the coordinate changes of the electron probability density oscillated periodically in the AGPQW with every certain period T0=22.475 fs.(iii) Due to the confinement that is a two dimensional x-y plane symmetric structure in the AGPQW and the asymmetrical Gaussian potential(AGP) in the AGPQW growth direction,the electron probability density presents only one peak configuration located in the coordinate of z 〉 0,whereas it is zero in the range of z 〈 0.(iv) The oscillatory period is a decreasing function of the AGPQW height and the polaron radius,(v) The oscillating period is a decreasing one in the confinement potential R 〈 0.24 nm,whereas it is an increasing one in the confinement potential R 〉 0.24 nm and it takes a minimum value in R = 0.24 nm.展开更多
基金The project supported by the Natural Science Foundation of Sichuan Normal University
文摘The quantum properties of O(2,2) string cosmology with a dilaton potential are studied in this paper. The cosmological solutions are obtained on three-dlmensional space-time. Moreover, the quantum probability of transition between two duality universe is calculated through a Wheeler-De Witt approach.
文摘This paper proposes an innovative approach to social science research based on quantum theory,integrating quantum probability,quantum game theory,and quantum statistical methods into a comprehensive interdisciplinary framework for both theoretical and empirical investigation.The study elaborates on how core quantum concepts such as superposition,interference,and measurement collapse can be applied to model social decision making,cognition,and interactions.Advanced quantum computational methods and algorithms are employed to transition from theoretical model development to simulation and experimental validation.Through case studies in international relations,economic games,and political decision making,the research demonstrates that quantum models possess significant advantages in explaining irrational and context-dependent behaviors that traditional methods often fail to capture.The paper also explores the potential applications of quantum social science in policy formulation and public decision making,addresses the ethical,privacy,and social equity challenges posed by quantum artificial intelligence,and outlines future research directions at the convergence of quantum AI,quantum machine learning,and big data analytics.The findings suggest that quantum social science not only offers a novel perspective for understanding complex social phenomena but also lays the foundation for more accurate and efficient systems in social forecasting and decision support.
文摘In this paper, an attempt is made to synthesize fuzzy mathematics and quantum mechanics. By using the method of fuzzy mathematics to blur the probability (wave) of quantum mechanics, the concept of fuzzy wave function is put forward to describe the fuzzy quantum probability. By applying the non-fuzzy formula of fuzzy quantity and Schrödinger wave equation of quantum mechanics, the membership function equation is established to describe the evolution of the fuzzy wave function. The concept of membership degree amplitude is introduced to calculate fuzzy probability amplitude. Some important concepts in fuzzy mathematics are also illustrated.
文摘The quantum probability theory of fuzzy event is suggested by using the idea and method of fuzzy mathematics, giving the form of fuzzy event path integral, membership degree amplitude, fuzzy field function, Green function, physical quantity and fuzzy diagram. This theory reforms quantum mechanics, making the later become its special case. This theory breaks unitarity, gauge invariance, probability conservation and information conservation, making these principles become approximate ones under certain conditions. This new theory, which needs no renormalization and can naturally give meaningful results which are in accordance with the experiments, is the proper theory to describe microscopic high-speed phenomenon, whereas quantum mechanics is only a proper theory to describe microscopic low-speed phenomenon. This theory is not divergent under the condition of there being no renormalization and infinitely many offsetting terms, thereby it can become the theoretical framework required for the quantization of gravity.
基金National Natural Science Foundation of China under Grant No.10575017
文摘Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.
文摘In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>č</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span>
基金Project supported by the National Natural Science Foundation of China(No.11464033)the Mongolia University for Nationalities Fund(No.NMDYB1445)
文摘With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited states(GFES) in a RbCl crystal asymmetric Gaussian potential quantum well(AGPQW).It concludes:(i) Twoenergy-level of the AGPQW may be seen as a qubit.(ii) When the electron located in the superposition state of the two-energy-level system,the time evolution and the coordinate changes of the electron probability density oscillated periodically in the AGPQW with every certain period T0=22.475 fs.(iii) Due to the confinement that is a two dimensional x-y plane symmetric structure in the AGPQW and the asymmetrical Gaussian potential(AGP) in the AGPQW growth direction,the electron probability density presents only one peak configuration located in the coordinate of z 〉 0,whereas it is zero in the range of z 〈 0.(iv) The oscillatory period is a decreasing function of the AGPQW height and the polaron radius,(v) The oscillating period is a decreasing one in the confinement potential R 〈 0.24 nm,whereas it is an increasing one in the confinement potential R 〉 0.24 nm and it takes a minimum value in R = 0.24 nm.