感知节点的定位是无线传感网应用的基础。现有的静态定位算法无法应用于动态传感网。针对一类目标节点移动而锚节点静止的传感网应用,提出了一种RRMCL(RSSI Rank Monte Carlo Localization)定位算法。该算法以蒙特卡罗算法为基础,利用RS...感知节点的定位是无线传感网应用的基础。现有的静态定位算法无法应用于动态传感网。针对一类目标节点移动而锚节点静止的传感网应用,提出了一种RRMCL(RSSI Rank Monte Carlo Localization)定位算法。该算法以蒙特卡罗算法为基础,利用RSSI(Received Signal Strength Indication)值与距离的单调递减关系划分通信域,减少采样区域大小。为了避免锚节点共线出现定位失效的情况,引入共线影响角度,提出了一种约束策略。仿真结果表明,提出的RRMCL与现有的MCL和MCB定位算法相比,能有效缩小采样区域,提高了定位精度和速度。展开更多
利用容积卡尔曼滤波来设计粒子滤波器的重要性密度函数,并将当前的测量信息迭代到贯序重要性采样(SIS)过程中,进而提出一种基于迭代容积粒子滤波的RSSI(received signal strength indicator)蒙特卡罗定位算法.该算法使用迭代容积粒子滤...利用容积卡尔曼滤波来设计粒子滤波器的重要性密度函数,并将当前的测量信息迭代到贯序重要性采样(SIS)过程中,进而提出一种基于迭代容积粒子滤波的RSSI(received signal strength indicator)蒙特卡罗定位算法.该算法使用迭代容积粒子滤波对目标位置和无线信道衰减参数同时进行估计,采用迭代的方式对测量方程进行更新,进一步提高无线信道衰减参数的估计精度.仿真结果表明,基于迭代容积粒子滤波的RSSI蒙特卡罗定位算法对比基于无味粒子滤波的RSSI定位算法,能够有效降低室内无线定位的误差.展开更多
文摘感知节点的定位是无线传感网应用的基础。现有的静态定位算法无法应用于动态传感网。针对一类目标节点移动而锚节点静止的传感网应用,提出了一种RRMCL(RSSI Rank Monte Carlo Localization)定位算法。该算法以蒙特卡罗算法为基础,利用RSSI(Received Signal Strength Indication)值与距离的单调递减关系划分通信域,减少采样区域大小。为了避免锚节点共线出现定位失效的情况,引入共线影响角度,提出了一种约束策略。仿真结果表明,提出的RRMCL与现有的MCL和MCB定位算法相比,能有效缩小采样区域,提高了定位精度和速度。
文摘利用容积卡尔曼滤波来设计粒子滤波器的重要性密度函数,并将当前的测量信息迭代到贯序重要性采样(SIS)过程中,进而提出一种基于迭代容积粒子滤波的RSSI(received signal strength indicator)蒙特卡罗定位算法.该算法使用迭代容积粒子滤波对目标位置和无线信道衰减参数同时进行估计,采用迭代的方式对测量方程进行更新,进一步提高无线信道衰减参数的估计精度.仿真结果表明,基于迭代容积粒子滤波的RSSI蒙特卡罗定位算法对比基于无味粒子滤波的RSSI定位算法,能够有效降低室内无线定位的误差.