In this study, the variation of radio refractivity with respect to temperature and moisture is analyzed. Also, the effects of vertical gradients in temperature and moisture on the propagation paths of electromagnetic ...In this study, the variation of radio refractivity with respect to temperature and moisture is analyzed. Also, the effects of vertical gradients in temperature and moisture on the propagation paths of electromagnetic waves of weather radar are examined for several sites across the United States using several years of sounding data from the National Weather Service. The ray path is important for identifying storm characteristics and for properly using the radar data in initializing numerical weather prediction models. It is found that during the warm season the radio refractivity gradient is more sensitive to moisture gradients than to temperature gradients. Ray paths from the commonly accepted vertical ray path model are compared to a ray path computed from a stepwise ray tracing algorithm using data from actual soundings. For the sample of about 16 000 soundings examined, we find that only a small fraction of the ray paths diverge significantly from those calculated using a ray path model based on the US Standard Atmosphere. While the problem of ray dueting in the presence of a temperature inversion is fairly well known, we identify the presence of a strong vertical moisture gradient as the culprit in the majority of the cases where significant deviations occurred.展开更多
Intraday variations of compact extragalactic radio sources in flux density and polarization are generally interpreted in terms of refractive scintillation from the continuous interstellar medium of our Galaxy. However...Intraday variations of compact extragalactic radio sources in flux density and polarization are generally interpreted in terms of refractive scintillation from the continuous interstellar medium of our Galaxy. However, continuous polarization angle swings of - 180° (for example, the one observed in the QSO 0917+624) could not be interpreted in this way. Qian et al. have shown that the polarization angle swing observed in the QSO 1150+812 can be explained in terms of focusing-defocusing effect by an interstellar cloud, which occults two closely-placed polarized components. Here we further show that the polarization angle swing event observed in the QSO 0917+624 can also be explained in this way. We also found evidence for the cloud eclipsing a non-polarized (core) component during a short period out- side the swing. A particular (and specific) plasma-lens model is proposed to model-fit the polarization swing event of 0917+624. Some physical parameters related to the plasma-lens and the source components are estimated. The brightness temperatures of the two lensed components are estimated to be -1.6× 10^13 K. Thus bulk relativistic motion with a Lorentz factor less than -20 may be sufficient to avoid the inverse - Compton catastrophe.展开更多
基金U. S. NSF Grant Nos. ATM-0331756, ATM-0331594, ATM-0530814 and EEC-0313747, and by DOT-FAA Grant NA17RJ1227-01the National Natural Science Foun- dation of China under Grant Nos. 40620120437 and 40505022
文摘In this study, the variation of radio refractivity with respect to temperature and moisture is analyzed. Also, the effects of vertical gradients in temperature and moisture on the propagation paths of electromagnetic waves of weather radar are examined for several sites across the United States using several years of sounding data from the National Weather Service. The ray path is important for identifying storm characteristics and for properly using the radar data in initializing numerical weather prediction models. It is found that during the warm season the radio refractivity gradient is more sensitive to moisture gradients than to temperature gradients. Ray paths from the commonly accepted vertical ray path model are compared to a ray path computed from a stepwise ray tracing algorithm using data from actual soundings. For the sample of about 16 000 soundings examined, we find that only a small fraction of the ray paths diverge significantly from those calculated using a ray path model based on the US Standard Atmosphere. While the problem of ray dueting in the presence of a temperature inversion is fairly well known, we identify the presence of a strong vertical moisture gradient as the culprit in the majority of the cases where significant deviations occurred.
文摘Intraday variations of compact extragalactic radio sources in flux density and polarization are generally interpreted in terms of refractive scintillation from the continuous interstellar medium of our Galaxy. However, continuous polarization angle swings of - 180° (for example, the one observed in the QSO 0917+624) could not be interpreted in this way. Qian et al. have shown that the polarization angle swing observed in the QSO 1150+812 can be explained in terms of focusing-defocusing effect by an interstellar cloud, which occults two closely-placed polarized components. Here we further show that the polarization angle swing event observed in the QSO 0917+624 can also be explained in this way. We also found evidence for the cloud eclipsing a non-polarized (core) component during a short period out- side the swing. A particular (and specific) plasma-lens model is proposed to model-fit the polarization swing event of 0917+624. Some physical parameters related to the plasma-lens and the source components are estimated. The brightness temperatures of the two lensed components are estimated to be -1.6× 10^13 K. Thus bulk relativistic motion with a Lorentz factor less than -20 may be sufficient to avoid the inverse - Compton catastrophe.