期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
Neural network study of the nuclear ground-state spin distribution within a random interaction ensemble
1
作者 Deng Liu Alam Noor A +1 位作者 Zhen-Zhen Qin Yang Lei 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期216-227,共12页
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t... The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists. 展开更多
关键词 Neural network Two-body random ensemble Spin distribution of nuclear ground state
在线阅读 下载PDF
Fragility of disconnect switch subjected to random earthquake ground motions 被引量:1
2
作者 吕宝龙 陈玲俐 叶志明 《Journal of Shanghai University(English Edition)》 CAS 2011年第3期180-184,共5页
A fragility calculation scheme is estabtished in this paper for porcelain-type equipments subjected to random earthquake ground motions. All steps of the method are illustrated by the seismic damage analysis of GW4-11... A fragility calculation scheme is estabtished in this paper for porcelain-type equipments subjected to random earthquake ground motions. All steps of the method are illustrated by the seismic damage analysis of GW4-110 disconnect switch. The model of the equipment is built applying the finite element method with flexible joints, and the seismic response of the equipment is analyzed using elastic time history method. On the base, according to the strength damage index and Monte-Carlo Method, the seismic damage ratios are counted and the seismic fragility curves are presented. Then the seismic damage of GW4-110 disconnect switch can be predicted. 展开更多
关键词 disconnect switch FRAGILITY random earthquake ground motion strength damage index
在线阅读 下载PDF
An approach to estimate tree height using PolInSAR data constructed by the Sentinel-1 dual-pol SAR data and RVoG model
3
作者 Yin Zhang Ding-Feng Duan 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期69-79,共11页
We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Se... We estimate tree heights using polarimetric interferometric synthetic aperture radar(PolInSAR)data constructed by the dual-polarization(dual-pol)SAR data and random volume over the ground(RVoG)model.Considering the Sentinel-1 SAR dual-pol(SVV,vertically transmitted and vertically received and SVH,vertically transmitted and horizontally received)configuration,one notes that S_(HH),the horizontally transmitted and horizontally received scattering element,is unavailable.The S_(HH)data were constructed using the SVH data,and polarimetric SAR(PolSAR)data were obtained.The proposed approach was first verified in simulation with satisfactory results.It was next applied to construct PolInSAR data by a pair of dual-pol Sentinel-1A data at Duke Forest,North Carolina,USA.According to local observations and forest descriptions,the range of estimated tree heights was overall reasonable.Comparing the heights with the ICESat-2 tree heights at 23 sampling locations,relative errors of 5 points were within±30%.Errors of 8 points ranged from 30%to 40%,but errors of the remaining 10 points were>40%.The results should be encouraged as error reduction is possible.For instance,the construction of PolSAR data should not be limited to using SVH,and a combination of SVH and SVV should be explored.Also,an ensemble of tree heights derived from multiple PolInSAR data can be considered since tree heights do not vary much with time frame in months or one season. 展开更多
关键词 Constructed polarimetric SAR data Dual polarization Sentinel-1 SAR data Polarimetric interferometric SAR random volume over the ground model Tree height estimation
在线阅读 下载PDF
应用背包和无人机LiDAR数据对森林地上生物量估测
4
作者 李馨 岳彩荣 +4 位作者 罗洪斌 张澜钟 沈健 李佳 李初蕤 《东北林业大学学报》 CAS 北大核心 2025年第2期105-113,共9页
激光雷达(LiDAR)技术在林业调查中应用广泛,能够精确获取森林垂直结构信息。利用背包LiDAR结合实地调查样地,验证其替代实地调查的可行性;应用UAV-LiDAR数据,采用多元逐步回归(MSR)、支持向量机(SVM)和随机森林(RF)算法,建立地上生物量... 激光雷达(LiDAR)技术在林业调查中应用广泛,能够精确获取森林垂直结构信息。利用背包LiDAR结合实地调查样地,验证其替代实地调查的可行性;应用UAV-LiDAR数据,采用多元逐步回归(MSR)、支持向量机(SVM)和随机森林(RF)算法,建立地上生物量估测模型并进行对比分析。研究结果显示:(1)在人工干预下,应用背包LiDAR数据提取的单木参数与实测值高度相关,平均胸径的决定系数(R^(2))为0.98,均方根误差(R_(MSE))为0.35 cm;平均树高的R^(2)为0.96,R_(MSE)为0.63 m。(2)应用背包LiDAR构建的生物量样本,利用UAV-LiDAR建立的AGB估测模型中,随机森林模型表现最佳(R^(2)=0.75,R_(MSE)=23.58 t/hm^(2)),其次是支持向量机模型(R^(2)=0.63,R_(MSE)=30.49 t/hm^(2)),多元逐步回归模型表现最差(R^(2)=0.54,R_(MSE)=35.60 t/hm^(2))。因此,背包LiDAR获取的单木胸径及树高精度较高,可替代实测样地生物量,以扩大样本覆盖范围;应用背包LiDAR数据结合机载LiDAR,可实现较大尺度的森林生物量快速估测,为大范围森林生物量反演提供了一种可行方法。 展开更多
关键词 背包激光雷达 无人机激光雷达 森林地上生物量 多元逐步回归 支持向量机 随机森林
在线阅读 下载PDF
中间柱-杠杆阻尼装置的放大效率研究
5
作者 李淑婷 邓津 +2 位作者 蒲小武 张晓阳 王平 《世界地震工程》 北大核心 2025年第2期147-159,共13页
传统杠杆放大装置能有效地增大黏滞阻尼器的变形从而提高其耗能效率,但其占据大量的建筑空间。中间柱式阻尼装置占据建筑空间小,但耗能效率低。提出了一种新型耗能放大装置,该装置基于带黏滞阻尼器的中间柱-杠杆机构,简称“CLVD”(colum... 传统杠杆放大装置能有效地增大黏滞阻尼器的变形从而提高其耗能效率,但其占据大量的建筑空间。中间柱式阻尼装置占据建筑空间小,但耗能效率低。提出了一种新型耗能放大装置,该装置基于带黏滞阻尼器的中间柱-杠杆机构,简称“CLVD”(column-lever viscous damper)。首先,引入位移放大系数f_d和耗能系数f_E来评价CLVD的放大效率;其次,推导了f_d和f_E的理论表达式,阐述了中间柱位置、梁抗弯线刚度、杠杆放大系数、阻尼系数和层间位移等参数对CLVD效率的影响。分析表明:当中间柱位于跨度中部时CLVD的f_d和f_E最大;存在最优的杠杆放大系数和阻尼系数使得CLVD的f_E最大。最后,给出了在不同情形下CLVD的优化策略,将5种不同CLVD方案应用于9层框架的地震响应控制。结果表明:采用所提出的优化方法能有效增强CLVD的位移放大能力和耗能,同时对结构地震响应起到良好的控制效果。 展开更多
关键词 消能减震 中间柱-杠杆阻尼装置 位移放大系数 耗能系数 优化控制
在线阅读 下载PDF
考虑温度相关冻胀率的浅埋隧道冻结法施工地表变形计算
6
作者 肖旻 李苗苗 +4 位作者 王正中 刘俊伟 江浩源 吴浪 王则乐 《冰川冻土》 2025年第2期408-416,共9页
地表冻胀变形是评估浅埋隧道水平冻结施工引起邻近既有结构力学响应的关键因素。现有研究无法合理考虑冻结壁不均匀温度场导致冻胀率的空间差异分布,为克服上述不足,结合随机介质理论和叠加原理,引入折算热膨胀系数的概念,在热弹性力学... 地表冻胀变形是评估浅埋隧道水平冻结施工引起邻近既有结构力学响应的关键因素。现有研究无法合理考虑冻结壁不均匀温度场导致冻胀率的空间差异分布,为克服上述不足,结合随机介质理论和叠加原理,引入折算热膨胀系数的概念,在热弹性力学框架下提出了一种单圈管水平冻结施工引起地表冻胀变形分布的计算方法。结合工程实例,分别应用本文方法、传统方法、有限元法计算了单圈管冻结引起的地表变形分布,并与观测值进行对比分析,以表明本文所提方法的合理性与适用性。最后,分别探讨了冷媒介质温度、隧道中心埋深及冻结锋面扩展系数ε对水平冻结施工引起地表冻胀变形分布的影响规律。结果表明,冷媒介质温度越低,地表冻胀变形总体呈增大趋势,对隧道中心正上方土体变形影响显著;隧道埋置深度越大,最大地表冻胀变形减小,影响范围也逐渐减小;ε越大,最大地表冻胀变形及影响范围均增大,但增大幅度不明显。本研究可为浅埋隧道水平冻结施工技术在高风险地下工程领域的应用提供参考。 展开更多
关键词 隧道 人工冻结法 地表变形 随机介质理论 温度相关冻胀率
在线阅读 下载PDF
顾及地形因素的S-RVOG模型和PD相干最优算法联合反演植被高度 被引量:13
7
作者 解清华 汪长城 +1 位作者 朱建军 付海强 《测绘学报》 EI CSCD 北大核心 2015年第6期686-693,701,共9页
针对极化干涉SAR植被高度反演中RVOG模型未考虑地形影响,且三阶段算法受到地面相位估计误差和纯体相干性估计误差影响,提出了一种植被高度反演思路,采用考虑地形因素的S-RVOG模型作为反演模型校正地形影响,同时引入PD相干最优算法用于... 针对极化干涉SAR植被高度反演中RVOG模型未考虑地形影响,且三阶段算法受到地面相位估计误差和纯体相干性估计误差影响,提出了一种植被高度反演思路,采用考虑地形因素的S-RVOG模型作为反演模型校正地形影响,同时引入PD相干最优算法用于改善三阶段算法中直线拟合地表相位估计和纯体相干性估计精度。为验证算法的有效性,首先采用欧空局提供的PolSARpro软件模拟了不同地形坡度水平的PolInSAR数据进行仿真试验,然后采用德国宇航局提供的E-SAR机载全极化SAR数据进行真实植被场景测试,并进行了定性和定量分析。结果表明,本文方法对于不同坡度水平数据,均能有效改善传统RVOG反演模型中地形影响和三阶段算法自身误差影响,反演精度更高。 展开更多
关键词 S-rvog(slope random volume over ground) 植被高度 三阶段算法 PD相干最优 地形影响 EGSAR
在线阅读 下载PDF
基于S-RVoG模型的PolInSAR森林高度非线性复数最小二乘反演算法 被引量:5
8
作者 解清华 朱建军 +2 位作者 汪长城 付海强 张兵 《测绘学报》 EI CSCD 北大核心 2020年第10期1303-1310,共8页
针对经典的PolInSAR森林高度三阶段几何反演算法在单基线条件容易受到地体幅度比假设以及地形坡度影响的问题,从测量平差角度提出了基于S-RVoG模型的PolInSAR非线性复数最小二乘森林高度反演算法。该算法不再需要假设某一个极化通道地... 针对经典的PolInSAR森林高度三阶段几何反演算法在单基线条件容易受到地体幅度比假设以及地形坡度影响的问题,从测量平差角度提出了基于S-RVoG模型的PolInSAR非线性复数最小二乘森林高度反演算法。该算法不再需要假设某一个极化通道地体幅度比为零,且采用考虑地形坡度影响的S-RVoG模型作为平差模型。为了验证算法,本文采用欧空局BioSAR2008项目提供的3景P波段极化干涉SAR数据进行两组单基线森林高度反演试验。结果表明,在单基线条件下,基于RVoG模型的非线性复数最小二乘算法反演结果优于三阶段几何反演算法,而基于S-RVoG模型的非线性复数最小二乘算法进一步提高反演精度,对于坡度较大区域(坡度>10°),精度平均提高了18.48%。 展开更多
关键词 极化干涉SAR 森林高度 地形坡度 S-rvog模型 复数最小二乘
在线阅读 下载PDF
基于PS-InSAR技术的天山山脉东段地面沉降影响因素探究
9
作者 李孟 李晓光 +3 位作者 杨洋 赵普志 赵蓂冠 王红霞 《粘接》 2025年第5期135-138,共4页
地面沉降是一个全球性的地质环境问题,严重威胁了地面及地下基础设施建设安全性。为探明地面沉降影响因子,以天山山脉东段为研究对象,基于永久散射体干涉测量(Persistent Scatterer Interferometric Synthetic Aperture Radar, PS-InSAR... 地面沉降是一个全球性的地质环境问题,严重威胁了地面及地下基础设施建设安全性。为探明地面沉降影响因子,以天山山脉东段为研究对象,基于永久散射体干涉测量(Persistent Scatterer Interferometric Synthetic Aperture Radar, PS-InSAR)沉降数据和其他7个影响因子数据,利用极端随机树分析地面沉降影响因素。结果表明,2022年研究区整体沉降量较小,区域内零星分布有沉降区,最大沉降量为75 mm;高程、地形起伏度、坡度、断裂和降水对沉降影响较大,重要性占比达93.3%,建筑和矿区开采未造成显著影响。 展开更多
关键词 地面沉降 PS-INSAR 极端随机树 影响因子
在线阅读 下载PDF
基于随机介质理论修正Peck公式的暗挖隧道地表沉降预测
10
作者 蓝必冠 黄明锋 +2 位作者 杨浩 刘彬 周世均 《广州建筑》 2025年第2期1-6,共6页
本文为更加准确地预测隧道开挖引起的地表沉降,采用随机介质理论对传统Peck经验公式进行了修正,提出了新隧道开挖引起地表沉降的计算方法。本文研究了不同覆跨比H/D和土层损失率μ条件下,地表沉降特性与合理单元数n的关系,提出了确定合... 本文为更加准确地预测隧道开挖引起的地表沉降,采用随机介质理论对传统Peck经验公式进行了修正,提出了新隧道开挖引起地表沉降的计算方法。本文研究了不同覆跨比H/D和土层损失率μ条件下,地表沉降特性与合理单元数n的关系,提出了确定合理单元数n的方法。通过将修正Peck公式和传统Peck经验公式计算的地表沉降值与实测数据进行对比分析,结果表明,修正Peck公式比传统Peck经验公式能较好地预测隧道开挖引起的地表沉降。研究成果为传统Peck公式扩大了适用范围,丰富了隧道施工中地下开挖引起地表沉降的计算方法。 展开更多
关键词 隧道开挖 PECK公式 随机介质理论 地表沉降 预测
在线阅读 下载PDF
Rupture directivity and hanging wall effect in near field strong ground motion simulation 被引量:2
11
作者 陶夏新 王国新 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第2期205-212,共8页
A random synthesis procedure based on finite fault model is adopted for near field strong ground motion simulation in this paper. The fault plane of the source is divided into a number of sub-sources, the whole moment... A random synthesis procedure based on finite fault model is adopted for near field strong ground motion simulation in this paper. The fault plane of the source is divided into a number of sub-sources, the whole moment magnitude is also divided into more sub-events. The Fourier spectrum of ground motion caused by a sub-event in given sub-source, then can be derived by means of taking the point source spectrum, attenuation with distance, energy dissipation, and near surface effect, into account. A time history is synthesized from this amplitude spectrum and a random phase spectrum, and being combined with an envelope function. The ground motion is worked out by superposition of all time histories from each sub-event in each sub-source, with time lags determining by the differences between the triggering times of sub-events and distances of the sub-sources. From the example of simulations at 21 near field points in a scenario earthquake with 4 dip angles of the fault plane, it is illustrated that the procedure can describe the rupture directivity and hanging wall effect very well. To validate the procedure, the response spectra and time histories recorded at three near fault stations MCN, LV3 and PCD during the Northridge earthquake in 1994, are compared with the simulated ones. 展开更多
关键词 near field strong ground motion rupture directivity hanging wall SOURCE random synthesis
在线阅读 下载PDF
SEISMIC RANDOM VIBRATION ANALYSIS OF STOCHASTIC STRUCTURES USING RANDOM FACTOR METHOD 被引量:2
12
作者 KESSISSOGLOU Nicole J 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期1-8,共8页
Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their... Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation. 展开更多
关键词 Seismic random vibration Uncertainty structures random factor methodNon-stationary ground motion
在线阅读 下载PDF
Ground motion record simulation for structural analysis by consideration of spectral acceleration autocorrelation pattern
13
作者 Alireza Azarbakht Mahdi Sadeghi Mehdi Mousavi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期195-202,共8页
A novel approach is introduced to generate simulated ground motion records by considering spectral acceleration correlations at multiple periods. Most of the current reliable Ground Motion Record(GMR) simulation proce... A novel approach is introduced to generate simulated ground motion records by considering spectral acceleration correlations at multiple periods. Most of the current reliable Ground Motion Record(GMR) simulation procedures use a seismological model including source, path and site characteristics. However, the response spectrum of simulated GMR is somewhat different when compared with the response spectrum based on recorded GMRs. More specifi cally, the correlation between the spectral values at multiple periods is a characteristic of a record which is usually different between simulated and recorded GMRs. As this correlation has a signifi cant infl uence on the structural response, it is needed to investigate the consistency of the simulated ground motions with actual records. This issue has been investigated in this study by incorporating an optimization algorithm within the Boore simulation technique. Eight seismological key parameters were optimized in order to achieve approximately the same correlation coeffi cients and spectral acceleration between two sets of real and simulated records. The results show that the acceleration response spectra of the synthetic ground motions also have good agreement with the real recorded response spectra by implementation of the proposed optimized values. 展开更多
关键词 stochastic method simulation ground motion random vibration site amplifi cation EXSIM program
在线阅读 下载PDF
Seismic Response of Base-Isolated Structures underMulti-component Ground Motion Excitation
14
作者 Jiang Yicheng Tang Jiaxiang School of Civil Engineering , Huazhong University of Science and Technology, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第1期90-94,共5页
An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square respond of the system is Obtained under different parametric variations. The effectiveness of main param... An analysis of a base-isolated structure for multi-component random ground motion is presented. The mean square respond of the system is Obtained under different parametric variations. The effectiveness of main parameters and the torsional component during an earthquake is quantified with the help of the response ratio and the root mean square response with and without base isolation. It is observed that the base isolation has considerable influence on the response and the effect of the torsional component is not ignored. 展开更多
关键词 multi-component ground motion base isolation random response root mean square response.
在线阅读 下载PDF
Ground Ozone Level Prediction Using Machine Learning
15
作者 Zhiying Meng 《Journal of Software Engineering and Applications》 2019年第10期423-431,共9页
Because of the increasing attention on environmental issues, especially air pollution, predicting whether a day is polluted or not is necessary to people’s health. In order to solve this problem, this research is cla... Because of the increasing attention on environmental issues, especially air pollution, predicting whether a day is polluted or not is necessary to people’s health. In order to solve this problem, this research is classifying ground ozone level based on big data and machine learning models, where polluted ozone day has class 1 and non-ozone day has class 0. The dataset used in this research was derived from the UCI Website, containing various environmental factors in Houston, Galveston and Brazoria area that could possibly affect the occurrence of ozone pollution [1]. This dataset is first filled up for further process, next standardized to ensure every feature has the same weight, and then split into training set and testing set. After this, five different machine learning models are used in the prediction of ground ozone level and their final accuracy scores are compared. In conclusion, among Logistic Regression, Decision Tree, Random Forest, AdaBoost, and Support Vector Machine (SVM), the last one has the highest test score of 0.949. This research utilizes relatively simple methods of forecasting and calculates the first accuracy scores in predicting ground ozone level;it can thus be a reference for environmentalists. Moreover, the direct comparison among five different models provides machine learning field an insight to determine the most accurate model. In the future, Neural Network can also be utilized to predict air pollution, and its test scores can be compared with the previous five methods to conclude the accuracy of Neuron Network. 展开更多
关键词 ground OZONE POLLUTION MACHINE Learning Classification LOGISTIC Regression Decision Tree random Forest ADABOOST Support Vector MACHINE
在线阅读 下载PDF
Improving the Autoregressive Modeling Method in Random Noise Suppression of GPR Data Using Undecimated Discrete Wavelet Transform
16
作者 Behrooz Oskooi Amin Ebrahimi Bardar Alireza Goodarzi 《Journal of Signal and Information Processing》 2018年第1期24-35,共12页
Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possi... Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband. 展开更多
关键词 ground PENETRATING Radar random Noise Undecimated Discrete WAVELET TRANSFORM AUTOREGRESSIVE Filter
在线阅读 下载PDF
基于地相位优化估计的RVoG三阶段森林冠层高度反演
17
作者 罗洪斌 朱泊东 +3 位作者 岳彩荣 杨文俊 龙飞 徐婉婷 《农业机械学报》 EI CAS CSCD 北大核心 2022年第7期301-307,共7页
极化干涉合成孔径雷达(PolInSAR)估测森林结构参数中,数据受基线长度、信噪比、环境地形以及雷达波长的影响,尤其在复杂森林环境条件下,会导致观测到的复相干存在误差,从而影响最终的反演结果。为解决此问题,首先探讨了体相干选择对RVo... 极化干涉合成孔径雷达(PolInSAR)估测森林结构参数中,数据受基线长度、信噪比、环境地形以及雷达波长的影响,尤其在复杂森林环境条件下,会导致观测到的复相干存在误差,从而影响最终的反演结果。为解决此问题,首先探讨了体相干选择对RVoG三阶段森林冠层高度反演的影响,以地相位为参考逐像素选择距离地相位最远的相干性作为体相干。其次改进了地相位估计方法,采用戴明回归(DMR)和正交回归(OGR)2种相干直线拟合方法来改进地相位的估计,并在DMR拟合方法中设置了不同的误差比(0.3和0.6)来比较地相位估计方法对RVoG三阶段森林冠层高度反演的影响。研究结果表明:以地相位为参考逐像素选择体相干的反演结果相较于直接使用HV极化通道的复相干γ_(HV)为体相干的反演精度有明显提升,决定系数(R^(2))由0.349增加到0.383,均方误差由7.097 m^(2)降低到5.755 m^(2)。在体相干优化选择的基础上,采用了戴明回归和正交回归对地相位估计方法进行了改进。表明基于最小二乘回归(LSR)地相位估计的RVoG三阶段反演精度最低,采用DMR和OGR进行相干线拟合的反演精度相较于LSR均有一定提升,所有反演结果的决定系数(R^(2))均在0.440左右,均方误差(MSE)均降低了2 m^(2)左右。研究结果说明采用RVoG三阶段方法反演森林冠层高度时,在复相干存在误差的情况下,用传统最小二乘回归(LSR)估计地相位进行高度反演会对结果带来一定误差,通过其他相干直线拟合方法来克服复相干误差的影响能改善最终的森林冠层高度反演结果,以地相位为参考选择体相干的反演方法也更为合理。 展开更多
关键词 森林冠层高度 地相位估计 体相干选择 rvog三阶段反演 POLINSAR
在线阅读 下载PDF
天空地一体化多目标跟踪算法研究综述 被引量:1
18
作者 闫莉萍 刘晗钊 夏元清 《信号处理》 CSCD 北大核心 2024年第11期1951-1971,共21页
为实现全时全域“泛在连接”,构建天空地一体化网络已成为国家重大需求,而基于天空地一体化网络下跨域协同系统进行多目标跟踪是其中一个重要的发展方向,其在军民用领域都极具应用价值。本文详细阐述了天空地一体化网络背景下多目标跟... 为实现全时全域“泛在连接”,构建天空地一体化网络已成为国家重大需求,而基于天空地一体化网络下跨域协同系统进行多目标跟踪是其中一个重要的发展方向,其在军民用领域都极具应用价值。本文详细阐述了天空地一体化网络背景下多目标跟踪方法研究进展。首先,介绍了天空地一体化跨域协同多目标跟踪的研究背景与意义。其次,从基于视觉的多目标跟踪、基于模型的多目标跟踪和基于多模态融合的多目标跟踪三个方面概述了当前的代表性研究方法:在基于视觉的多目标跟踪算法方面,介绍了单摄像头和多摄像头融合的多目标跟踪方法;对于基于模型的多目标跟踪,先介绍了单传感器多目标跟踪方法,以及在多种复杂场景下的改进,然后介绍了多传感器融合方法;在基于多模态信息融合的目标跟踪方面,在对多传感器时空配准方法和有代表性的多模态信息融合方法介绍的基础上,概括了基于多模态融合的多目标跟踪算法。最后探讨了当前存在的问题和未来发展方向:无论基于视觉的还是基于模型的多目标跟踪方法都有不少问题有待解决,特别是两种方法的结合值得深入研究;在面临复杂干扰时,基于多传感器信息融合的多目标跟踪由于能实现信息的互补,成为未来的主流发展方向;此外,跨域协同系统,由于能利用更多的资源和信息,其多目标跟踪问题研究极具价值,不过其中通信安全问题和多目标跟踪模型轻量化问题值得探讨。本文对从事目标跟踪及空天地一体化协同控制相关理论与技术研究的科研工作者具有重要参考价值。 展开更多
关键词 天空地一体化 视觉目标跟踪 随机有限集 多模型 多模态信息融合
在线阅读 下载PDF
基于点云特征的改进RANSAC地面分割算法 被引量:1
19
作者 隋心 王思语 +4 位作者 罗力 陈志键 史政旭 张杰 郝玉婷 《导航定位学报》 CSCD 北大核心 2024年第1期106-114,共9页
针对室外复杂场景下,轻量级和地面优化的激光雷达里程计与测图(LeGO-LOAM)算法由于地面分割不精确而导致算法定位精度降低的问题,提出一种基于改进随机一致性采样(RANSAC)的多线程地面分割算法:相较于传统RANSAC算法,该算法舍弃从全部... 针对室外复杂场景下,轻量级和地面优化的激光雷达里程计与测图(LeGO-LOAM)算法由于地面分割不精确而导致算法定位精度降低的问题,提出一种基于改进随机一致性采样(RANSAC)的多线程地面分割算法:相较于传统RANSAC算法,该算法舍弃从全部原始数据中随机选取种子点拟合地面模型的迭代方式,首先利用点云高程、曲率等点特征信息挑选出所有小于高程、曲率等阈值的种子点以构建种子点集合,并根据种子点集合中的种子点数量判断是否需要多线程处理;然后根据判断结果从种子点集合中选择种子点子集进行地面拟合;最后比较各地面模型所包含的点云数量以获得最优地面模型参数以及地面点云集;地面分割精度的提高有效地降低了LeGO-LOAM算法的定位误差。实验结果表明,在室外复杂场景下所提出的地面分割算法分割效果更好,杂点更少;相较于原LeGO-LOAM算法,改进算法的定位误差降低至3.73 m,平面均方根误差降低了20.8%。 展开更多
关键词 轻量级和地面优化的激光雷达里程计与测图(LeGO-LOAM) 随机一致性采样(RANSAC) 地面分割 室外定位
在线阅读 下载PDF
基于随机森林算法的天津市滨海地区地面沉降模拟
20
作者 耿芳 白苏娜 +6 位作者 齐文艳 于金山 毛华 张梅 席雪萍 高学飞 罗福贵 《地质科技通报》 CAS CSCD 北大核心 2024年第5期197-205,共9页
地面沉降的监测与预测,对于保障城市安全和社会可持续发展具有重要意义和现实价值。利用随机森林机器学习模型预测了天津市滨海地区的地面沉降量空间分布,并评估了模型的性能和变量的重要性。基于2020年天津市滨海新区局部地区的地面沉... 地面沉降的监测与预测,对于保障城市安全和社会可持续发展具有重要意义和现实价值。利用随机森林机器学习模型预测了天津市滨海地区的地面沉降量空间分布,并评估了模型的性能和变量的重要性。基于2020年天津市滨海新区局部地区的地面沉降量、含水层岩性、含水组水位差、水文地质参数等数据来训练和验证随机森林模型。结果表明:随机森林模型能够较好地拟合和预测地面沉降量(R^(2)=0.98,RMSE=0.52 mm);影响地面沉降量最重要的因素是水位差,其次是含水层的岩性(砂-黏比值),最后是相关水文地质参数。上述结果与传统上太沙基原理基本吻合,进一步验证了模型的正确性和可预测性。本研究采用了空间分布数据来训练随机森林模型;根据物理机制,选取了重要控制因素来开展分析;评估了控制因素的重要性程度,并指出了研究的局限性和未来的研究方向,为利用随机森林模型快速有效预测地面沉降提供了重要参考和启示。 展开更多
关键词 地面沉降 滨海地区 随机森林 机器学习 天津市
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部