The optical rogue wave(RW),known as a short-lived extraordinarily high amplitude dynamics phenomenon with small appearing probabilities,plays an important role in revealing and understanding the fundamental physics of...The optical rogue wave(RW),known as a short-lived extraordinarily high amplitude dynamics phenomenon with small appearing probabilities,plays an important role in revealing and understanding the fundamental physics of nonlinear wave propagations in optical systems.The random fiber laser(RFL),featured with cavity-free and“modeless”structure,has opened up new avenues for fundamental physics research and potential practical applications combining nonlinear optics and laser physics.Here,the extreme event of optical RW induced by noise-driven modulation instability that interacts with the cascaded stimulated Brillouin scattering,the quasi-phase-matched four-wave mixing as well as the random mode resonance process is observed in a Brillouin random fiber laser comb(BRFLC).Temporal and statistical characteristics of the RWs concerning their emergence and evolution are experimentally explored and analyzed.Specifically,temporally localized structures with high intensities including chair-like pulses with a sharp leading edge followed by a trailing plateau appear frequently in the BRFLC output,which can evolve to chair-like RW pulses with adjustable pulse duration and amplitude under controlled conditions.This investigation provides a deep insight into the extreme event of RWs and paves the way for RW manipulation for its generation and elimination in RFLs through adapted laser configuration.展开更多
Engineering structures are often subjected to the influences of performance deterioration and multiple hazards during their service lives,and consequently may suffer from damage/failure as a result of external loads.S...Engineering structures are often subjected to the influences of performance deterioration and multiple hazards during their service lives,and consequently may suffer from damage/failure as a result of external loads.Structural reliability and resilience assessment is a powerful tool for quantifying the structural ability to withstand these environmental or operational attacks.This paper proposes new formulas for structural time-dependent reliability and resilience analyses in the presence of multiple hazards,which are functions of the duration of the reference period of interest.The joint impacts of nonstationarities in multiple hazards due to a changing environment,as well as the deterioration of structural performance,are explicitly incorporated.The correlation between the structural resistances/capacities associated with different hazard types is modeled by employing a copula function.It is observed that,under the context of multiple hazards and aging effects,the time-dependent resilience takes a generalized form of time-dependent reliability.The proposed formulas can be used to guide the adaptive design of structures,where adaptive strategies are identified across a range of possible future service conditions.An example is presented to demonstrate the applicability of the proposed method for structural reliability and resilience analyses.展开更多
A bounded,mono-peak,and symmetrically distributed probability density function, called λ-PDF,together with the Gegenbauer polynomial approximation,is used in dynamic response problems of random structures.The λ-PDF ...A bounded,mono-peak,and symmetrically distributed probability density function, called λ-PDF,together with the Gegenbauer polynomial approximation,is used in dynamic response problems of random structures.The λ-PDF can reasonably model a variety of random parameters in engineering random structures.The Gegenbauer polynomial approximation can be viewed as a new extension of the weighted residual method into the random space.Both of them can be easily used by scientists and engineers,and applied to a variety of response problems of random structures.The numerical example shows the effectiveness of the proposed method to study dynamic phenomena in random structures.展开更多
A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their inter...A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features.展开更多
Flexible electrically pumped random laser(RL) based on ZnO nanowires is demonstrated for the first time to our knowledge. The ZnO nanowires each with a length of 5 μm and an average diameter of 180 nm are synthesiz...Flexible electrically pumped random laser(RL) based on ZnO nanowires is demonstrated for the first time to our knowledge. The ZnO nanowires each with a length of 5 μm and an average diameter of 180 nm are synthesized on flexible substrate(ITO/PET) by a simple hydrothermal method. No obvious visible defect-related-emission band is observed in the photoluminescence(PL) spectrum, indicating that the ZnO nanowires grown on the flexible ITO/PET substrate have few defects. In order to achieve electrically pumped random lasing with a lower threshold, the metal–insulator–semiconductor(MIS) structure of Au/SiO2/ZnO on ITO/PET substrate is fabricated by low temperature process. With sufficient forward bias, the as-fabricated flexible device exhibits random lasing, and a low threshold current of ~ 11.5 m A and high luminous intensity are obtained from the ZnO-based random laser. It is believed that this work offers a case study for developing the flexible electrically pumped random lasing from ZnO nanowires.展开更多
Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their...Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.展开更多
Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to ra...Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to random vibrations is presented for supporting engineer’s design. This criterion differs from the most commonly used conventional optimum design criterion for random vibrating structure, which is based on minimizing displacement or acceleration variance of main structure responses, without considering explicitly required performances against failure. The proposed criterion can properly take into account the design-reliability required performances, and it becomes a more efficient support for structural engineering decision making. The multiobjective optimum (MOO) design of a tuned mass damper (TMD) has been developed in a typical seismic design problem, to control structural vibration induced on a multi-storey building structure excited by nonstationary base acceleration random process. A numerical example for a three-storey building is developed and a sensitivity analysis is carried out. The results are shown in a useful manner for TMD design decision support.展开更多
Soils with spatial variability are the product of natural history.The mechanical properties tested by soil samples from boreholes in the same soil layer may be different.Underground structure service in surrounding so...Soils with spatial variability are the product of natural history.The mechanical properties tested by soil samples from boreholes in the same soil layer may be different.Underground structure service in surrounding soils,their seismic response is controlled by the deformation of the surrounding soils.The variability of soil mechanical parameters was not considered in the current research on the seismic response of underground structures.Therefore,a random field model was established to describe the spatial variability of surrounding soils based on the random field theory.Then the seismic response of underground structures in the random field was simulated based on the time-domain explicit global FEM analysis,and the soil mechanical parameters and earthquake intensity influencing the seismic response of surrounding soils and underground structures were studied.Numerical results presented that,the randomness of soil parameters does not change the plastic deformation mode of surrounding soils significantly.The variation coefficients of inter-story deformation of structures and lateral deformation of columns are much smaller than that of mechanical parameters,and the randomness of soil parameters has no obvious effect on the structural deformation response.展开更多
The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response charact...The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.展开更多
Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this wo...Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.展开更多
A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
Let(B,||·||)be a Banach space,(?,F,P)a probability space,and L^0(F,B)the set of equivalence classes of strong random elements(or strongly measurable functions)from(?,F,P)to(B,||·||).It is well known that L^0...Let(B,||·||)be a Banach space,(?,F,P)a probability space,and L^0(F,B)the set of equivalence classes of strong random elements(or strongly measurable functions)from(?,F,P)to(B,||·||).It is well known that L^0(F,B)becomes a complete random normed module,which has played an important role in the process of applications of random normed modules to the theory of Lebesgue-Bochner function spaces and random operator theory.Let V be a closed convex subset of B and L^0(F,V)the set of equivalence classes of strong random elements from(?,F,P)to V.The central purpose of this article is to prove the following two results:(1)L^0(F,V)is L^0-convexly compact if and only if V is weakly compact;(2)L^0(F,V)has random normal structure if V is weakly compact and has normal structure.As an application,a general random fixed point theorem for a strong random nonexpansive operator is given,which generalizes and improves several well known results.We hope that our new method,namely skillfully combining measurable selection theorems,the theory of random normed modules,and Banach space techniques,can be applied in the other related aspects.展开更多
A new model — model of random porous media degradation via several fluid displacing, freezing, and thawing cycles is introduced and investigated in this paper. The fluid transport is based on the deterministic method...A new model — model of random porous media degradation via several fluid displacing, freezing, and thawing cycles is introduced and investigated in this paper. The fluid transport is based on the deterministic method with dispersion effect. The result shows that the topology and the geometry of the porous media have a strong effect on displacement processes. The cluster size of viscous fingering (VF) pattern in percolation cluster increases with the increase of iteration parameter n. When iteration parameter , VF pattern does not change with n. We find that the displacement fluid forms trapping regions in random porous media with dispersion effect. And the trapping regions will expand with the increasing of the iteration parameter n. When r (throat size) and , the peak value of the distribution increases as n increases, where is the normalized distribution of throat sizes after different displacement-damages but before freezing. The peak value of the distribution reaches a maximum when and , where is the normalized distribution of the size of invaded throat. This result is different from invasion percolation. It is found that the sweep efficiency E increases along with the increasing of iteration parameter n and decreases with the network size L, and E has a minimum as L increases to the maximum size of lattice. The VF pattern in percolation cluster has one frozen zone and one active zone.展开更多
The purpose of this article is to develop a new methodology to evaluate the statistical characteristic of the response of structures subjecting to random excitation, by combining the Finite Element Method (FEM) with t...The purpose of this article is to develop a new methodology to evaluate the statistical characteristic of the response of structures subjecting to random excitation, by combining the Finite Element Method (FEM) with the Transforming Density Function (TDF). Uncertainty modeling of structure with random variables encourages the coupling of advanced TDF for reliability analysis to analyze problems of stochastic mechanical systems. The TDF is enthusiastically applicable in the situation where the relationship between input and output of structures is available in explicit analytical form. However, the situation is much more involved when it is necessary to perform the evaluation of implicit expression between input and output of structures through numerical models. For this aim, we propose a new technique that combines the FEM software, and the TDF method to evaluate the most important statistical parameter the Probability Density Function (PDF) of the response where the expression between input and output of structures is implicit. Once the PDF is evaluated, all other statistical parameters are derived easily. This technique is based on the numerical simulations of the FEM and the TDF by making a middleware between Finite Element software and Matlab. Some problems, range from simple to complex, of structures are analyzed using our proposed technique. Its accuracy is validated through Monte-Carlo simulation.展开更多
Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process...Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
Hypoxanthine-guanine phosphoribosyltransferase ( HGPRT, EC 2.4.2.8) is a key enzyme of the purine salvage pathway, which allows recycling of purine bases into DNA and RNA. It is widely distributed in nature and has ...Hypoxanthine-guanine phosphoribosyltransferase ( HGPRT, EC 2.4.2.8) is a key enzyme of the purine salvage pathway, which allows recycling of purine bases into DNA and RNA. It is widely distributed in nature and has been studied both in prokaryotes and eukaryotes. In humans, a complete lack of HGPRT activity causes the Lesch-Nyhan syndrome, which is characterized by hyperuricaemia and neural disorders,展开更多
A method to calculate the stationary random response of a non-classically damped structure is proposed that features clearly-defined physical meaning and simple expression. The method is developed in the frequency dom...A method to calculate the stationary random response of a non-classically damped structure is proposed that features clearly-defined physical meaning and simple expression. The method is developed in the frequency domain. The expression of the proposed method consists of three terms, i.e., modal velocity response, modal displacement response, and coupled (between modal velocity and modal displacement response). Numerical results from the parametric study and three example structures reveal that the modal velocity response term and the coupled term are important to structural response estimates only for a dynamic system with a tuned mass damper. In typical cases, the modal displacement term can provide response estimates with satisfactory accuracy by itself, so that the modal velocity term and coupled term may be ignored without loss of accuracy. This is used to simplify the response computation of non-classically damped structures. For the white noise excitation, three modal correlation coefficients in closed form are derived. To consider the modal velocity response term and the coupled term, a simplified approximation based on white noise excitation is developed for the case when the modal velocity response is important to the structural responses. Numerical results show that the approximate expression based on white noise excitation can provide structural responses with satisfactory accuracy.展开更多
Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these ...Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these mechanisms were poorly understood in the temperate forests of northeastern China, which prevented the development of new management methods aimed at increasing functional trait diversity and thus ecological resilience.Methods:In this study, we mapped functional diversity distributions using a Kriging Interpolation Method. A specific random forest model approach was adopted to test the importance ranking of 18 variables in explaining the spatial variation of functional diversity. Three piecewise structural equation models (pSEMs) with forest types as random effects were constructed for testing the direct effects of climate, and the indirect effects of stand structure on functional diversity across the large study region. Specific causal relationships in each forest type were also examined using 15 linear structural equation models.Results:Although environmental filtering by climate is important, stand structure explains most of the functional variation of the forest ecosystems in northeastern China. Our study thus only partially supports the stressdominance hypothesis. Several abundant species determine most of the functional diversity, which supports the mass ratio hypothesis.Conclusions:Our results suggest that forest management aimed at increasing structural complexity can contribute to increased functional diversity, especially regarding the mixing of coniferous and broad-leaved tree species.展开更多
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ...The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.62105180)the Natural Science Foundation of Shandong Province (Grant Nos.ZR2020MF110 and ZR2020MF118)+2 种基金the Taishan Scholar Foundation of Shandong Province (Grant No.tsqn202211027)the Qilu Young Scholar Program of Shandong Universitythe National Grant Program for High-level Returning Oversea Talents (2023).
文摘The optical rogue wave(RW),known as a short-lived extraordinarily high amplitude dynamics phenomenon with small appearing probabilities,plays an important role in revealing and understanding the fundamental physics of nonlinear wave propagations in optical systems.The random fiber laser(RFL),featured with cavity-free and“modeless”structure,has opened up new avenues for fundamental physics research and potential practical applications combining nonlinear optics and laser physics.Here,the extreme event of optical RW induced by noise-driven modulation instability that interacts with the cascaded stimulated Brillouin scattering,the quasi-phase-matched four-wave mixing as well as the random mode resonance process is observed in a Brillouin random fiber laser comb(BRFLC).Temporal and statistical characteristics of the RWs concerning their emergence and evolution are experimentally explored and analyzed.Specifically,temporally localized structures with high intensities including chair-like pulses with a sharp leading edge followed by a trailing plateau appear frequently in the BRFLC output,which can evolve to chair-like RW pulses with adjustable pulse duration and amplitude under controlled conditions.This investigation provides a deep insight into the extreme event of RWs and paves the way for RW manipulation for its generation and elimination in RFLs through adapted laser configuration.
基金supported by the Vice-Chancellor’s Postdoctoral Research Fellowship from the University of Wollongong.
文摘Engineering structures are often subjected to the influences of performance deterioration and multiple hazards during their service lives,and consequently may suffer from damage/failure as a result of external loads.Structural reliability and resilience assessment is a powerful tool for quantifying the structural ability to withstand these environmental or operational attacks.This paper proposes new formulas for structural time-dependent reliability and resilience analyses in the presence of multiple hazards,which are functions of the duration of the reference period of interest.The joint impacts of nonstationarities in multiple hazards due to a changing environment,as well as the deterioration of structural performance,are explicitly incorporated.The correlation between the structural resistances/capacities associated with different hazard types is modeled by employing a copula function.It is observed that,under the context of multiple hazards and aging effects,the time-dependent resilience takes a generalized form of time-dependent reliability.The proposed formulas can be used to guide the adaptive design of structures,where adaptive strategies are identified across a range of possible future service conditions.An example is presented to demonstrate the applicability of the proposed method for structural reliability and resilience analyses.
基金The project supported by the National Natural Science Foundation of China (10332030)
文摘A bounded,mono-peak,and symmetrically distributed probability density function, called λ-PDF,together with the Gegenbauer polynomial approximation,is used in dynamic response problems of random structures.The λ-PDF can reasonably model a variety of random parameters in engineering random structures.The Gegenbauer polynomial approximation can be viewed as a new extension of the weighted residual method into the random space.Both of them can be easily used by scientists and engineers,and applied to a variety of response problems of random structures.The numerical example shows the effectiveness of the proposed method to study dynamic phenomena in random structures.
基金Funded by the National Key Research and Development Program of China(No.2023YFB3812200)。
文摘A machine learning(ML)-based random forest(RF)classification model algorithm was employed to investigate the main factors affecting the formation of the core-shell structure of BaTiO_(3)-based ceramics and their interpretability was analyzed by using Shapley additive explanations(SHAP).An F1-score changed from 0.8795 to 0.9310,accuracy from 0.8450 to 0.9070,precision from 0.8714 to 0.9000,recall from 0.8929 to 0.9643,and ROC/AUC value of 0.97±0.03 was achieved by the RF classification with the optimal set of features containing only 5 features,demonstrating the high accuracy of our model and its high robustness.During the interpretability analysis of the model,it was found that the electronegativity,melting point,and sintering temperature of the dopant contribute highly to the formation of the core-shell structure,and based on these characteristics,specific ranges were delineated and twelve elements were finally obtained that met all the requirements,namely Si,Sc,Mn,Fe,Co,Ni,Pd,Er,Tm,Lu,Pa,and Cm.In the process of exploring the structure of the core-shell,the doping elements can be effectively localized to be selected by choosing the range of features.
基金supported by the National Natural Science Foundation of China(Grant Nos.61405040,61675027,51622205,51432005,61505010,and 51502018)the National Key Research and Development Project,Ministry of Science and Technology,China(Grant No 2016YFA0202703)+2 种基金the National Postdoctoral Program for Innovative Talents,China(Grant No.BX201600040)the China Postdoctoral Science Foundation(Grant No.2016M600976)the“Thousand Talents”Program of China for Pioneering Researchers and Innovative Teams
文摘Flexible electrically pumped random laser(RL) based on ZnO nanowires is demonstrated for the first time to our knowledge. The ZnO nanowires each with a length of 5 μm and an average diameter of 180 nm are synthesized on flexible substrate(ITO/PET) by a simple hydrothermal method. No obvious visible defect-related-emission band is observed in the photoluminescence(PL) spectrum, indicating that the ZnO nanowires grown on the flexible ITO/PET substrate have few defects. In order to achieve electrically pumped random lasing with a lower threshold, the metal–insulator–semiconductor(MIS) structure of Au/SiO2/ZnO on ITO/PET substrate is fabricated by low temperature process. With sufficient forward bias, the as-fabricated flexible device exhibits random lasing, and a low threshold current of ~ 11.5 m A and high luminous intensity are obtained from the ZnO-based random laser. It is believed that this work offers a case study for developing the flexible electrically pumped random lasing from ZnO nanowires.
文摘Seismic random vibration analysis of stochastic truss structures is presented. A new method called random factor method is used for dynamic analysis of structures with uncertain parameters, due to variability in their material properties and geometry. Using the random factor method, the natural frequencies and modeshapes of a stochastic structure can be respectively described by the product of two parts, corresponding to the random factors of the structural parameters with uncertainty, and deterministic values of the natural frequencies and modeshapes obtained by conventional finite element analysis. The stochastic truss structure is subjected to stationary or non-stationary random earthquake excitation. Computational expressions for the mean and standard deviation of the mean square displacement and mean square stress are developed by means of the random variable's functional moment method and the algebra synthesis method. An antenna and a truss bridge are used as practical engineering examples to illustrate the application of the random factor method in the seismic response analysis of random structures under stationary or non-stationary random earthquake excitation.
文摘Based on a multiobjective approach whose objective function (OF) vector collects stochastic reliability performance and structural cost indices, a structural optimization criterion for mechanical systems subject to random vibrations is presented for supporting engineer’s design. This criterion differs from the most commonly used conventional optimum design criterion for random vibrating structure, which is based on minimizing displacement or acceleration variance of main structure responses, without considering explicitly required performances against failure. The proposed criterion can properly take into account the design-reliability required performances, and it becomes a more efficient support for structural engineering decision making. The multiobjective optimum (MOO) design of a tuned mass damper (TMD) has been developed in a typical seismic design problem, to control structural vibration induced on a multi-storey building structure excited by nonstationary base acceleration random process. A numerical example for a three-storey building is developed and a sensitivity analysis is carried out. The results are shown in a useful manner for TMD design decision support.
基金supported by the Beijing Natural Science Foundation(8212007)the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(JDYC20200311)。
文摘Soils with spatial variability are the product of natural history.The mechanical properties tested by soil samples from boreholes in the same soil layer may be different.Underground structure service in surrounding soils,their seismic response is controlled by the deformation of the surrounding soils.The variability of soil mechanical parameters was not considered in the current research on the seismic response of underground structures.Therefore,a random field model was established to describe the spatial variability of surrounding soils based on the random field theory.Then the seismic response of underground structures in the random field was simulated based on the time-domain explicit global FEM analysis,and the soil mechanical parameters and earthquake intensity influencing the seismic response of surrounding soils and underground structures were studied.Numerical results presented that,the randomness of soil parameters does not change the plastic deformation mode of surrounding soils significantly.The variation coefficients of inter-story deformation of structures and lateral deformation of columns are much smaller than that of mechanical parameters,and the randomness of soil parameters has no obvious effect on the structural deformation response.
文摘The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.
基金Project(2011CB013504) supported by the National Basic Research Program(973 Program)of ChinaProject(2013BAB06B01) supported by the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period+2 种基金Projects(11772118,51479049,51709282) supported by the National Natural Science Foundation of ChinaProject(2017M620838) supported by the Postdoctoral Science Foundation of ChinaProject(487237) supported by the Natural Sciences and Engineering Research Council of Canada
文摘Outwash deposit is a unique type of geological materials, and its features such as heterogeneity, discontinuity and nonlinearity determine the complexity of mechanical characteristics and failure mechanism. In this work, random meso-structure of outwash deposits was constructed by the technique of computer random simulation based on characteristics of its meso-structure in the statistical sense and some simplifications, and a series of large direct shear tests on numerical samples of outwash deposits with stone contents of 15%, 30%, 45% and 60% were conducted using the discrete element method to further investigate its mechanical characteristics and failure mechanism under external load. The results show that the deformation characteristics and shear strength of outwash deposits are to some extent improved with the increase of stone content, and the shear stress–shear displacement curves of outwash deposits show great differences at the post-peak stage due to the random spatial distribution and content of stones. From the mesoscopic view, normal directions of contacts between "soil" and "stone" particles undergo apparent deflection as the shear displacement continues during the shearing process, accompanying redistribution of the magnitude of contact forces during the shearing process. For outwash deposits, the shear zone formed after shear failure is an irregular stripe due to the movements of stones near the shear zone, and it expands gradually with the increase of stone content. In addition, there is an approximately linear relation between the mean increment of internal friction angle and the stone content lying between 30% and 60%, and a concave nonlinear relation between the mean increment of cohesion and stone content, which are in good agreement with the existing research results.
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
基金This work was supported by National Natural Science Foundation of China(11571369)。
文摘Let(B,||·||)be a Banach space,(?,F,P)a probability space,and L^0(F,B)the set of equivalence classes of strong random elements(or strongly measurable functions)from(?,F,P)to(B,||·||).It is well known that L^0(F,B)becomes a complete random normed module,which has played an important role in the process of applications of random normed modules to the theory of Lebesgue-Bochner function spaces and random operator theory.Let V be a closed convex subset of B and L^0(F,V)the set of equivalence classes of strong random elements from(?,F,P)to V.The central purpose of this article is to prove the following two results:(1)L^0(F,V)is L^0-convexly compact if and only if V is weakly compact;(2)L^0(F,V)has random normal structure if V is weakly compact and has normal structure.As an application,a general random fixed point theorem for a strong random nonexpansive operator is given,which generalizes and improves several well known results.We hope that our new method,namely skillfully combining measurable selection theorems,the theory of random normed modules,and Banach space techniques,can be applied in the other related aspects.
文摘A new model — model of random porous media degradation via several fluid displacing, freezing, and thawing cycles is introduced and investigated in this paper. The fluid transport is based on the deterministic method with dispersion effect. The result shows that the topology and the geometry of the porous media have a strong effect on displacement processes. The cluster size of viscous fingering (VF) pattern in percolation cluster increases with the increase of iteration parameter n. When iteration parameter , VF pattern does not change with n. We find that the displacement fluid forms trapping regions in random porous media with dispersion effect. And the trapping regions will expand with the increasing of the iteration parameter n. When r (throat size) and , the peak value of the distribution increases as n increases, where is the normalized distribution of throat sizes after different displacement-damages but before freezing. The peak value of the distribution reaches a maximum when and , where is the normalized distribution of the size of invaded throat. This result is different from invasion percolation. It is found that the sweep efficiency E increases along with the increasing of iteration parameter n and decreases with the network size L, and E has a minimum as L increases to the maximum size of lattice. The VF pattern in percolation cluster has one frozen zone and one active zone.
文摘The purpose of this article is to develop a new methodology to evaluate the statistical characteristic of the response of structures subjecting to random excitation, by combining the Finite Element Method (FEM) with the Transforming Density Function (TDF). Uncertainty modeling of structure with random variables encourages the coupling of advanced TDF for reliability analysis to analyze problems of stochastic mechanical systems. The TDF is enthusiastically applicable in the situation where the relationship between input and output of structures is available in explicit analytical form. However, the situation is much more involved when it is necessary to perform the evaluation of implicit expression between input and output of structures through numerical models. For this aim, we propose a new technique that combines the FEM software, and the TDF method to evaluate the most important statistical parameter the Probability Density Function (PDF) of the response where the expression between input and output of structures is implicit. Once the PDF is evaluated, all other statistical parameters are derived easily. This technique is based on the numerical simulations of the FEM and the TDF by making a middleware between Finite Element software and Matlab. Some problems, range from simple to complex, of structures are analyzed using our proposed technique. Its accuracy is validated through Monte-Carlo simulation.
文摘Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
文摘Hypoxanthine-guanine phosphoribosyltransferase ( HGPRT, EC 2.4.2.8) is a key enzyme of the purine salvage pathway, which allows recycling of purine bases into DNA and RNA. It is widely distributed in nature and has been studied both in prokaryotes and eukaryotes. In humans, a complete lack of HGPRT activity causes the Lesch-Nyhan syndrome, which is characterized by hyperuricaemia and neural disorders,
基金National Natural Science Foundation of China Under Grant No.40072088
文摘A method to calculate the stationary random response of a non-classically damped structure is proposed that features clearly-defined physical meaning and simple expression. The method is developed in the frequency domain. The expression of the proposed method consists of three terms, i.e., modal velocity response, modal displacement response, and coupled (between modal velocity and modal displacement response). Numerical results from the parametric study and three example structures reveal that the modal velocity response term and the coupled term are important to structural response estimates only for a dynamic system with a tuned mass damper. In typical cases, the modal displacement term can provide response estimates with satisfactory accuracy by itself, so that the modal velocity term and coupled term may be ignored without loss of accuracy. This is used to simplify the response computation of non-classically damped structures. For the white noise excitation, three modal correlation coefficients in closed form are derived. To consider the modal velocity response term and the coupled term, a simplified approximation based on white noise excitation is developed for the case when the modal velocity response is important to the structural responses. Numerical results show that the approximate expression based on white noise excitation can provide structural responses with satisfactory accuracy.
基金supported by the Program of National Natural Science Foundation of China (No. 31971650)the Key Project of National Key Research and Development Plan (No. 2017YFC0504104)Beijing Forestry University Outstanding Young Talent Cultivation Project(No. 2019JQ03001)
文摘Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these mechanisms were poorly understood in the temperate forests of northeastern China, which prevented the development of new management methods aimed at increasing functional trait diversity and thus ecological resilience.Methods:In this study, we mapped functional diversity distributions using a Kriging Interpolation Method. A specific random forest model approach was adopted to test the importance ranking of 18 variables in explaining the spatial variation of functional diversity. Three piecewise structural equation models (pSEMs) with forest types as random effects were constructed for testing the direct effects of climate, and the indirect effects of stand structure on functional diversity across the large study region. Specific causal relationships in each forest type were also examined using 15 linear structural equation models.Results:Although environmental filtering by climate is important, stand structure explains most of the functional variation of the forest ecosystems in northeastern China. Our study thus only partially supports the stressdominance hypothesis. Several abundant species determine most of the functional diversity, which supports the mass ratio hypothesis.Conclusions:Our results suggest that forest management aimed at increasing structural complexity can contribute to increased functional diversity, especially regarding the mixing of coniferous and broad-leaved tree species.
基金the National Natural Science Foundation of China(51909136)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Grant No.2022KDZ21Fund of National Major Water Conservancy Project Construction(0001212022CC60001)。
文摘The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.