随着遥感技术的快速发展,高光谱遥感影像的分类方法研究受到普遍关注。现有高光谱遥感影像分类研究采用单一尺度下的超像素方法进行图像分割处理,无法确定最佳超像素个数,较易忽视图像细节信息,且单一核矩阵无法表征多特征信息导致分类...随着遥感技术的快速发展,高光谱遥感影像的分类方法研究受到普遍关注。现有高光谱遥感影像分类研究采用单一尺度下的超像素方法进行图像分割处理,无法确定最佳超像素个数,较易忽视图像细节信息,且单一核矩阵无法表征多特征信息导致分类精度降低。因此,本研究拟在多尺度下采用超像素分割方法对高光谱影像的第一主成分分量进行多尺度超像素分割处理,通过权值耦合多尺度空间光谱核与原始空间光谱核形成合成核来进行高光谱影像分类,并以Washington DC Mall高光谱影像为实验数据对本文方法进行测试与分析。实验结果显示,相较于对比方法,这一方法的有效分类精度最高提升6.93个百分点。结果证明该方法可以有效解决图像光谱无法自适应、光谱信息获取不全面的问题,能够显著提升高光谱影像分类精度。展开更多
Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlin...Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.展开更多
文摘随着遥感技术的快速发展,高光谱遥感影像的分类方法研究受到普遍关注。现有高光谱遥感影像分类研究采用单一尺度下的超像素方法进行图像分割处理,无法确定最佳超像素个数,较易忽视图像细节信息,且单一核矩阵无法表征多特征信息导致分类精度降低。因此,本研究拟在多尺度下采用超像素分割方法对高光谱影像的第一主成分分量进行多尺度超像素分割处理,通过权值耦合多尺度空间光谱核与原始空间光谱核形成合成核来进行高光谱影像分类,并以Washington DC Mall高光谱影像为实验数据对本文方法进行测试与分析。实验结果显示,相较于对比方法,这一方法的有效分类精度最高提升6.93个百分点。结果证明该方法可以有效解决图像光谱无法自适应、光谱信息获取不全面的问题,能够显著提升高光谱影像分类精度。
基金Project supported by the National Outstanding Youth ScienceFoundation of China (No. 60025308) and the Teach and ResearchAward Program for Outstanding Young Teachers in Higher EducationInstitutions of MOE, China
文摘Used for industrial process with different degree of nonlinearity, the two predictive control algorithms presented in this paper are based on Least Squares Support Vector Machines (LS-SVM) model. For the weakly nonlinear system, the system model is built by using LS-SVM with linear kernel function, and then the obtained linear LS-SVM model is transformed into linear input-output relation of the controlled system. However, for the strongly nonlinear system, the off-line model of the controlled system is built by using LS-SVM with Radial Basis Function (RBF) kernel. The obtained nonlinear LS-SVM model is linearized at each sampling instant of system running, after which the on-line linear input-output model of the system is built. Based on the obtained linear input-output model, the Generalized Predictive Control (GPC) algorithm is employed to implement predictive control for the controlled plant in both algorithms. The simulation results after the presented algorithms were implemented in two different industrial processes model; respectively revealed the effectiveness and merit of both algorithms.