Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we re...Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.展开更多
Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportio...Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.展开更多
AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexami...AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.展开更多
Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A...Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.展开更多
文摘Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.
基金This work was funded by the National High Technology Research and Development Program ("863" Program) of China under Grant No.2007AA01Z289
文摘Packet scheduling algorithm is the key technology to guarantee Quality of Service (QoS) and balance the fairness between users in broadband Wireless Metropolitan Area Network (WMAN). Based on the research of Proportional Fairness (PF) algorithm and Modified Largest Weighted Delay First (M-LWDF) algorithm, a new packet scheduling algorithm for real-time services in broadband WMAN, called Enhanced M-LWDF (EM-LWDF), was proposed. The algorithm phases in new information to measure the load of service queues and updates the state parameters in real-time way, which remarkably improves system performance.Simulation results show that comparing with M-LWDF algorithm, the proposed algorithm is advantageous in performances of queuing delay and fairness while guaranteeing system throughput.
基金This work was partly supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by theKorean government(MSIT)(No.2021-0-02068,Artificial Intelligence Innovation Hub)(No.RS-2022-00155966,Artificial Intelligence Convergence Innovation Human Resources Development(Ewha University)).
文摘AI(Artificial Intelligence)workloads are proliferating in modernreal-time systems.As the tasks of AI workloads fluctuate over time,resourceplanning policies used for traditional fixed real-time tasks should be reexamined.In particular,it is difficult to immediately handle changes inreal-time tasks without violating the deadline constraints.To cope with thissituation,this paper analyzes the task situations of AI workloads and findsthe following two observations.First,resource planning for AI workloadsis a complicated search problem that requires much time for optimization.Second,although the task set of an AI workload may change over time,thepossible combinations of the task sets are known in advance.Based on theseobservations,this paper proposes a new resource planning scheme for AIworkloads that supports the re-planning of resources.Instead of generatingresource plans on the fly,the proposed scheme pre-determines resourceplans for various combinations of tasks.Thus,in any case,the workload isimmediately executed according to the resource plan maintained.Specifically,the proposed scheme maintains an optimized CPU(Central Processing Unit)and memory resource plan using genetic algorithms and applies it as soonas the workload changes.The proposed scheme is implemented in the opensourcesimulator SimRTS for the validation of its effectiveness.Simulationexperiments show that the proposed scheme reduces the energy consumptionof CPU and memory by 45.5%on average without deadline misses.
基金Supported by the National High Technology Research and Development Programme of China (No. (2008AA11 A146 ), China Postdoctoral Science Foundation (20090450298).
文摘Safety-critical applications such as the independently driving systems of electric vehicle (EV) require a high degree of reliability. The controller area network (CAN) is used extensively in the control sectors. A new real-time and reliable scheduling algorithm based on time-triggered scheduler with a focus on the CAN-based distributed control systems for independently driving EV is exploited. A distributed control network model for a dual-wheel independendy driving EV is established. The timing and reliabili- ty analysis in the worst case with the algorithm is used to evaluate the predictability and dependability and the simulation based on the algorithm with CANoe software is designed. The results indicate the algorithm is more predicable and dependable.