Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder ...The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.展开更多
Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the interna...Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the internal flow field evolution during transients.Addressing this gap,the study presents an enhanced quasi-three dimensional(quasi-3D)transient simulation technique that integrates component volume effects,offering a significant leap from the preceding quasi-3D transient simulation method based on quasi-steady assumption.By embedding the component volume effects on density,momentum,and energy within the physical temporal dimension of the Navier-Stokes equations,the refined quasi-3D transient model achieves a closer representation of physical phenomena.Validation against a single-shaft turbofan engine’s experimental data confirms the model’s accuracy.Average errors for key performance indicators,including shaft speed,thrust,mass flow rate,and critical component exit temperature and pressure,remain below 0.41%,5.69%,2.55%,3.18%and 0.67%,respectively.Crucially,the model exposes a discernible temporal lag in the compressor outlet pressure and temperature response due to volume effects—previously unquantified in quasi-3D transient simulations.And further exploration of the meridional flow field emphasizes the consequential role of volumes in transient flow field evolution.Incorporating volume effects within quasi-3D transient simulations enhances engine modeling and is pivotal for precise transient analysis in engine design and optimization.展开更多
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金funded by the National Natural Science Foundation of China(Nos.52206131,U2233213and 51775025)the National Key R&D Program of China(2022YFB2602002,2018YFB0104100)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(LQ22E060004)the Science Center of Gas Turbine Project,China(No.P2022-A-I-001-001)。
文摘The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field.
基金supported by the National Natural Science Foundation of China(No.52376021).
文摘Current transient analysis predominantly relies on zero-dimensional/one-dimensional tools,proficient at capturing aerothermodynamic variations across critical engine stations but insufficient for analyzing the internal flow field evolution during transients.Addressing this gap,the study presents an enhanced quasi-three dimensional(quasi-3D)transient simulation technique that integrates component volume effects,offering a significant leap from the preceding quasi-3D transient simulation method based on quasi-steady assumption.By embedding the component volume effects on density,momentum,and energy within the physical temporal dimension of the Navier-Stokes equations,the refined quasi-3D transient model achieves a closer representation of physical phenomena.Validation against a single-shaft turbofan engine’s experimental data confirms the model’s accuracy.Average errors for key performance indicators,including shaft speed,thrust,mass flow rate,and critical component exit temperature and pressure,remain below 0.41%,5.69%,2.55%,3.18%and 0.67%,respectively.Crucially,the model exposes a discernible temporal lag in the compressor outlet pressure and temperature response due to volume effects—previously unquantified in quasi-3D transient simulations.And further exploration of the meridional flow field emphasizes the consequential role of volumes in transient flow field evolution.Incorporating volume effects within quasi-3D transient simulations enhances engine modeling and is pivotal for precise transient analysis in engine design and optimization.