期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
SAR目标识别对抗攻击综述:从数字域迈向物理域
1
作者 阮航 崔家豪 +4 位作者 毛秀华 任建迎 罗镔延 曹航 李海峰 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第6期1298-1326,共29页
基于深度神经网络的合成孔径雷达(SAR)图像目标识别已成为SAR应用领域的研究热点和前沿方向。然而,有研究指出深度神经网络模型易受到对抗样本攻击。对抗样本定义为在数据集内故意引入微小扰动所产生的输入样本,这种扰动足以使模型高信... 基于深度神经网络的合成孔径雷达(SAR)图像目标识别已成为SAR应用领域的研究热点和前沿方向。然而,有研究指出深度神经网络模型易受到对抗样本攻击。对抗样本定义为在数据集内故意引入微小扰动所产生的输入样本,这种扰动足以使模型高信度地产生错误判断。现有SAR对抗样本生成技术本质上仅作用于二维图像,即为数字域对抗样本。尽管近期有部分研究开始将SAR成像散射机理考虑用于对抗样本生成,但是仍然存在两个重要缺陷,一是仅在SAR图像上考虑成像散射机理,而没有将其置于SAR实际成像过程中进行考虑;二是在机制上无法实现三维物理域的攻击,即只实现了伪物理域对抗攻击。该文对SAR智能识别对抗攻击的技术现状和发展趋势进行了研究。首先,详细梳理了传统SAR图像对抗样本技术的发展脉络,并对各类技术的特点进行了对比分析,总结了现有技术存在的不足;其次,从SAR成像原理和实际过程出发,提出了物理域对抗攻击技术,通过调整目标物体的后向散射特性,或通过发射振幅和相位精细可调的干扰信号来实现对SAR智能识别算法对抗攻击的新思路,并展望了SAR对抗攻击在物理域下的具体实现方式;最后,进一步讨论了未来SAR智能对抗攻击技术的发展方向。 展开更多
关键词 对抗样本 合成孔径雷达(sar) sar目标识别 物理域对抗攻击 深度神经网络(DNN)
在线阅读 下载PDF
SAR-LAM:面向小样本SAR目标识别的轻量化适应策略 被引量:1
2
作者 史松昊 王晓丹 《空军工程大学学报》 CSCD 北大核心 2024年第3期103-111,共9页
针对小样本学习中跨域迁移导致模型性能下降的问题,提出一种面向小样本SAR目标识别的轻量化适应策略(SAR-LAM)。该方法通过知识蒸馏预训练一个具有泛化性能的通用编码器,向其中嵌入一个只在少量目标域样本上进行训练的适应模块,而后将... 针对小样本学习中跨域迁移导致模型性能下降的问题,提出一种面向小样本SAR目标识别的轻量化适应策略(SAR-LAM)。该方法通过知识蒸馏预训练一个具有泛化性能的通用编码器,向其中嵌入一个只在少量目标域样本上进行训练的适应模块,而后将提取的特征映射到一个分辨性更高的空间内,最终以原型网络为基线对查询集样本进行分类。该适应策略以增加少量学习参数为代价,克服了数据分布差异导致模型迁移受限的困难,增强了模型在目标域提取特征的能力,在小样本条件下将SAR目标识别的准确率提升了至少1.93个百分点,较其他方法展现出一定的优越性。 展开更多
关键词 sar目标识别 跨域小样本学习 轻量化
在线阅读 下载PDF
面向SAR目标识别深度网络可理解的类激活映射方法
3
作者 崔宗勇 杨致远 +2 位作者 蒋阳 曹宗杰 杨建宇 《雷达学报(中英文)》 EI CSCD 北大核心 2024年第2期428-442,共15页
随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一... 随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注。类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域。然而作为一种事后解释的方法,其只能静态展示当次识别过程中的显著性区域,无法动态展示当输入发生变化时显著性区域的变化规律。该文将扰动的思想引入类激活映射,提出了一种基于SAR背景杂波特性类激活映射方法(SCC-CAM),通过对输入图像引入同分布的全局扰动,逐步向SAR识别深度网络施加干扰,使得网络判决发生翻转,并在此刻计算网络神经元输出激活值的变化程度。该方法既能解决添加扰动可能带来的扰动传染问题,又能够动态观察和度量目标识别网络在识别过程中显著性区域的变化规律,从而增强深度网络的可理解性。在MSTAR数据集和OpenSARShip-1.0数据集上的试验表明,该文提出的算法具有更加精确的定位显著性区域的能力,相比于传统方法,在平均置信度下降率、置信度上升比例、信息量等评估指标上,所提算法具有更强的可理解性,能够作为通用的增强网络可理解性的方法。 展开更多
关键词 sar目标识别 网络可理解性 sar杂波特性 类激活映射 面积约束置信度下降率
在线阅读 下载PDF
基于Gabor滤波器和局部纹理特征提取的SAR目标识别算法 被引量:21
4
作者 王璐 张帆 +2 位作者 李伟 谢晓明 胡伟 《雷达学报(中英文)》 CSCD 2015年第6期658-665,共8页
该文提出了一种基于Gabor滤波器和Three-Patch Local Binary Patterns(TPLBP)局部纹理特征提取的合成孔径雷达(Synthetic Aperture Rader,SAR)图像目标识别算法。首先,利用Gabor滤波器对SAR图像在不同方向上进行滤波,增强SAR图像中目标... 该文提出了一种基于Gabor滤波器和Three-Patch Local Binary Patterns(TPLBP)局部纹理特征提取的合成孔径雷达(Synthetic Aperture Rader,SAR)图像目标识别算法。首先,利用Gabor滤波器对SAR图像在不同方向上进行滤波,增强SAR图像中目标及其阴影的关键特征;然后,利用TPLBP算法对Gabor滤波之后的图像进行局部纹理特征提取,该算法克服了Local Binary Patterns(LBP)算法无法描述大范围领域纹理特征的缺陷,并且保持了LBP旋转不变的特性,减少了SAR图像目标方位变化对识别效果的影响;最后利用极限学习机(Extreme Learning Machine,ELM)分类器实现目标识别。该文通过MSTAR数据库中的3类SAR目标识别实验验证了该算法的有效性。 展开更多
关键词 sar目标识别 GABOR滤波器 Three-Patch LBP 特征提取
在线阅读 下载PDF
稀疏表示框架下的SAR目标识别 被引量:5
5
作者 程建 黎兰 王海旭 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第4期524-529,共6页
稀疏表示选择最佳线性表示重构信号,可避免合成孔径雷达(SAR)目标识别中的方位角估计难题,同时减轻强相干噪声影响。稀疏字典选择是稀疏表示中的关键问题之一,该文提出分别使用级联方式和并联方式构造稀疏字典实现SAR目标识别。首先对... 稀疏表示选择最佳线性表示重构信号,可避免合成孔径雷达(SAR)目标识别中的方位角估计难题,同时减轻强相干噪声影响。稀疏字典选择是稀疏表示中的关键问题之一,该文提出分别使用级联方式和并联方式构造稀疏字典实现SAR目标识别。首先对训练样本进行对数归一化处理,使用主成分分析(PCA)特征提取和降维;然后对处理后的数据分别组成级联字典和并联字典,采用截断牛顿内点法(TNIPM)获得目标的稀疏表示;最后,在两种字典的稀疏表示框架下设计分类器对SAR目标识别。通过对比实验,验证了该文的字典构建方式在稀疏表示框架下对SAR目标识别的有效性。 展开更多
关键词 级联字典 字典构建 并联字典 稀疏表示 sar目标识别
在线阅读 下载PDF
卷积神经网络在SAR目标识别中的应用 被引量:8
6
作者 郝岩 白艳萍 +1 位作者 张校非 杜敦伟 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第5期204-209,共6页
针对SAR目标识别问题,提出了基于卷积神经网络的SAR目标识别方法,并在此基础上对算法进行改进,提出CNN-SVM模型。将传统卷积神经网络的soft-max分类器替换为支持向量机,并对卷积神经网络提取的特征进行分类。首先对样本做剪裁、去噪处理... 针对SAR目标识别问题,提出了基于卷积神经网络的SAR目标识别方法,并在此基础上对算法进行改进,提出CNN-SVM模型。将传统卷积神经网络的soft-max分类器替换为支持向量机,并对卷积神经网络提取的特征进行分类。首先对样本做剪裁、去噪处理,然后通过加噪、去噪等方法对样本进行扩充。通过对MSTAR数据集进行仿真发现:传统的卷积神经网络和改进后的卷积神经网络对3类目标的最佳识别正确率分别为97.5%和99.4%,证明了所提算法的有效性。 展开更多
关键词 sar目标识别 卷积神经网络 支持向量机
在线阅读 下载PDF
少量样本下基于孪生CNN的SAR目标识别 被引量:5
7
作者 王博威 潘宗序 +1 位作者 胡玉新 马闻 《雷达科学与技术》 北大核心 2019年第6期603-609,615,共8页
针对深度学习中的有监督学习需要大量的标注数据,提出了一种少量训练样本下的SAR目标识别方法,解决了SAR图像人工标注成本较高、标注样本不足的问题。首先通过构建正负样本对的策略对数据集进行样本扩充,大幅增加数据量;其次,设计了一... 针对深度学习中的有监督学习需要大量的标注数据,提出了一种少量训练样本下的SAR目标识别方法,解决了SAR图像人工标注成本较高、标注样本不足的问题。首先通过构建正负样本对的策略对数据集进行样本扩充,大幅增加数据量;其次,设计了一种基于度量学习和深度学习的孪生卷积神经网络(孪生CNN),用于衡量样本之间的相似概率;然后采用多任务联合学习的方法训练模型,有效缓解了相干斑噪声对SAR图像的影响,降低了噪声过多易引起的过拟合风险;最后,设计了一种基于孪生CNN的识别样本具体类别的加权投票模型。实验采用了MSTAR和OpenSARShip数据集,在小规模训练集上通过上述方法取得了较好的识别效果。 展开更多
关键词 少量样本 孪生卷积神经网络(孪生CNN) sar目标识别 过拟合
在线阅读 下载PDF
稀疏编码树框架下的SAR目标识别
8
作者 陈春林 张礼 刘学军 《计算机科学与探索》 CSCD 北大核心 2017年第5期768-775,共8页
为了提高利用合成孔径雷达(synthetic aperture radar,SAR)图像对目标型号识别的能力,在稀疏表示识别方法的基础上,提出了一种树形框架稀疏编码的雷达目标识别方法。稀疏编码树是由多个节点构成的分类器,其上每个节点由不同识别需求的... 为了提高利用合成孔径雷达(synthetic aperture radar,SAR)图像对目标型号识别的能力,在稀疏表示识别方法的基础上,提出了一种树形框架稀疏编码的雷达目标识别方法。稀疏编码树是由多个节点构成的分类器,其上每个节点由不同识别需求的子分类器构成。在训练阶段,分别针对目标型号识别需求以及型号识别需求学习相应分类器,组成分类器的根节点和子节点。识别阶段在根节点位置完成对目标类别的判断,再根据根节点的判断结果,对存在型号变体的目标,在子节点上再对型号进行识别,最终输出目标的识别结果,而不存在型号变体的目标则直接输出识别结果。基于美国运动和静止目标获取与识别(moving and stationary target acquisition and recognition,MSTAR)计划录取的SAR图像数据集上的实验结果表明,树形结构在取得与主流方法相当的目标类别识别精度的前提下,提高了对目标型号的识别能力,同时能够准确输出目标类别识别结果。 展开更多
关键词 sar目标识别 型号识别 稀疏编码树 字典学习 稀疏表示
在线阅读 下载PDF
基于加权极限学习机的SAR目标识别
9
作者 宗宇 《电子技术与软件工程》 2019年第4期91-91,共1页
提出了一种基础加权极限学习机的SAR目标识别算法。首先采用Gabor滤波器对图像进行特征放大处理,然后把处理后的特征采用主成分分析算法进行压缩,最后采用极限学习机算法进行分类识别,同时针对样本的噪声和离群点问题,提出了加权极限学... 提出了一种基础加权极限学习机的SAR目标识别算法。首先采用Gabor滤波器对图像进行特征放大处理,然后把处理后的特征采用主成分分析算法进行压缩,最后采用极限学习机算法进行分类识别,同时针对样本的噪声和离群点问题,提出了加权极限学习机的算法,实验结果表明本文的算法识别精度高,计算速度快,优势明显。 展开更多
关键词 加权极限学习机 sar目标识别算法 GABOR滤波器
在线阅读 下载PDF
基于多尺度胶囊Swin Transformer的SAR图像目标识别方法
10
作者 侯宇超 王洁 +4 位作者 李洪涛 郝岩 段晓旗 黄凯文 田有亮 《通信学报》 北大核心 2025年第3期274-290,共17页
通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transfor... 通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transformer编码结构,融合后对输入图像进行分类。每个结构通过基于膨胀卷积切片划分的胶囊令牌编码器和三维胶囊Swin Transformer模块构建,能捕获更深层次、更广泛的语义特征。在运动和静止目标的获取与识别(MSTAR)数据集及FUSAR-Ship数据集上的实验结果表明,MSCSTN在各种测试条件下均优于其他方法。结果表明,MSCSTN展现了良好的识别性能、泛化能力和应用潜力。 展开更多
关键词 膨胀卷积切片分区 胶囊令牌编码器 三维胶囊Swin Transformer模块 多尺度胶囊Swin Transformer网络 sar图像目标识别
在线阅读 下载PDF
结合未知类特征生成与分类得分修正的SAR目标开集识别方法
11
作者 陈健 雍奇锋 +1 位作者 杜兰 尹林伟 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3890-3907,共18页
现有合成孔径雷达(SAR)目标识别方法大多局限于闭集假定,即认为训练模板库内训练目标类别包含全部待测目标类别,不适用于库内已知类和库外未知新类目标共存的真实开放识别环境。针对训练模板库目标类别非完备情况下的SAR目标识别问题,... 现有合成孔径雷达(SAR)目标识别方法大多局限于闭集假定,即认为训练模板库内训练目标类别包含全部待测目标类别,不适用于库内已知类和库外未知新类目标共存的真实开放识别环境。针对训练模板库目标类别非完备情况下的SAR目标识别问题,该文提出一种结合未知类特征生成与分类得分修正的SAR目标开集识别方法。该方法在利用已知类学习原型网络保证已知类识别精度的基础上结合对潜在未知类特征分布的先验认知,生成未知类特征更新网络,进一步保证特征空间中已知类、未知类特征的鉴别性。原型网络更新完成后,所提方法挑选各已知类边界特征,并计算边界特征到各自类原型的距离(极大距离),通过极值理论对各已知类极大距离进行概率拟合确定了各已知类最大分布区域。测试阶段在度量待测样本特征与各已知类原型距离预测闭集分类得分的基础上,计算了各距离在对应已知类极大距离分布上的概率,并修正闭集分类得分,实现了拒判概率的自动确定。基于MSTAR实测数据集的实验结果表明,所提方法能够有效表征真实未知类特征分布并提升网络特征空间已知类与未知类特征的鉴别性,可同时实现对库内已知类目标的准确识别和对库外未知类新目标的准确拒判。 展开更多
关键词 sar目标识别 开集识别 未知类特征生成 极值理论 分类得分修正
在线阅读 下载PDF
自监督解耦动态分类器的小样本类增量SAR图像目标识别
12
作者 赵琰 赵凌君 +2 位作者 张思乾 计科峰 匡纲要 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3936-3948,共13页
为提升基于深度学习(DL)的合成孔径雷达自动目标识别(SAR ATR)系统在开放动态的非合作场景中对新类别目标的持续敏捷识别能力,该文研究了SAR ATR的小样本类增量学习(FSCIL)问题,并提出了自监督解耦动态分类器(SDDC)。针对FSCIL中“灾难... 为提升基于深度学习(DL)的合成孔径雷达自动目标识别(SAR ATR)系统在开放动态的非合作场景中对新类别目标的持续敏捷识别能力,该文研究了SAR ATR的小样本类增量学习(FSCIL)问题,并提出了自监督解耦动态分类器(SDDC)。针对FSCIL中“灾难性遗忘”和“过拟合”本质难点和SAR ATR领域挑战,根据SAR图像目标信息的部件化与方位角敏感性特点,于图像域构建了基于散射部件混淆与旋转模块(SCMR)的自监督学习任务,以提升目标表征的泛化性与稳健性。同时,设计了类印记交叉熵(CI-CE)损失并以参数解耦学习(PDL)策略对模型动态微调,以对新旧知识平衡判别。实验在由MSTAR和SAR-AIRcraft-1.0数据集分别构建的覆盖多种目标类别、观测条件和成像平台的FSCIL场景上验证了该算法开放动态环境的适应能力。 展开更多
关键词 sar目标识别 小样本类增量学习 自监督学习 深度学习
在线阅读 下载PDF
基于跨域小样本学习的SAR图像目标识别方法 被引量:2
13
作者 史松昊 王晓丹 +1 位作者 杨春晓 王艺菲 《计算机科学》 CSCD 北大核心 2024年第S01期453-459,共7页
由于SAR图像获取难度大,可供研究的样本数量较少,解决有限样本条件下SAR图像目标识别问题成为业界公认的挑战。随着深度学习在计算机视觉领域的发展,衍生出了多种小样本图像分类方法,因此考虑采用跨域小样本学习范式解决小样本SAR图像... 由于SAR图像获取难度大,可供研究的样本数量较少,解决有限样本条件下SAR图像目标识别问题成为业界公认的挑战。随着深度学习在计算机视觉领域的发展,衍生出了多种小样本图像分类方法,因此考虑采用跨域小样本学习范式解决小样本SAR图像目标识别问题。具体地,先在多个源域中训练得到不同域的特征提取器,而后通过知识蒸馏的方法获取一个通用的特征提取器,这里采用中心核对齐的方法,将提取的特征映射到一个更高维的空间,从而更好地区分原特征之间的非线性相似性;通过上一阶段获得的通用特征提取器提取目标域图像特征,最后采用原型网络的方法预测样本的类别。实验证明,该方法在缩减模型参数的同时,获得了88.61%的准确率,为解决小样本SAR图像目标识别问题提供了新的思路。 展开更多
关键词 深度学习 元学习 跨域小样本学习 sar图像目标识别 知识蒸馏
在线阅读 下载PDF
SAR目标增量识别中基于最大化非重合体积的样例挑选方法
14
作者 李斌 崔宗勇 +3 位作者 汪浩瀚 周正 田宇 曹宗杰 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期3918-3927,共10页
为了确保合成孔径雷达(SAR)自动目标识别(ATR)系统能够迅速适应新的应用环境,其必须具备快速学习新类的能力。目前的SAR ATR系统在学习新类时需要不断重复训练所有旧类样本,这会造成大量存储资源的浪费,同时识别模型无法快速更新。保留... 为了确保合成孔径雷达(SAR)自动目标识别(ATR)系统能够迅速适应新的应用环境,其必须具备快速学习新类的能力。目前的SAR ATR系统在学习新类时需要不断重复训练所有旧类样本,这会造成大量存储资源的浪费,同时识别模型无法快速更新。保留少量的旧类样例进行后续的增量训练是模型增量识别的关键。为了解决这个问题,该文提出基于最大化非重合体积的样例挑选方法(ESMNV),一种侧重于分布非重合体积的样例选择算法。ESMNV将每个已知类的样例选择问题转化为分布非重合体积的渐近增长问题,旨在最大化所选样例的分布的非重合体积。ESMNV利用分布之间的相似性来表示体积之间的差异。首先,ESMNV使用核函数将目标类别的分布映射到重建核希尔伯特空间(RKHS),并使用高阶矩来表示分布。然后,它使用最大均值差异(MMD)来计算目标类别与所选样例分布之间的差异。最后,结合贪心算法,ESMNV逐步选择使样例分布与目标类别分布差异最小的样例,确保在有限数量的样例情况下最大化所选样例的非重合体积。 展开更多
关键词 sar目标增量识别 样例挑选 非重合体积 最大均值差异 贪心算法
在线阅读 下载PDF
融合目标轮廓和阴影轮廓的SAR图像目标识别 被引量:7
15
作者 尹奎英 金林 +1 位作者 李成 刘宏伟 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2011年第1期24-28,共5页
针对合成孔径雷达图像目标识别问题,在基于图像成像模型分析基础上,提出了一种融合SAR目标轮廓和阴影轮廓的目标识别算法。首先提出了一种基于去控制标记符的SAR图像分割算法,得到SAR图像目标轮廓和阴影轮廓,然后用这2种轮廓融合,用傅... 针对合成孔径雷达图像目标识别问题,在基于图像成像模型分析基础上,提出了一种融合SAR目标轮廓和阴影轮廓的目标识别算法。首先提出了一种基于去控制标记符的SAR图像分割算法,得到SAR图像目标轮廓和阴影轮廓,然后用这2种轮廓融合,用傅立叶描述子将二维数据转为一维数据,最后用基于串接准则的融合算法得到识别结果,进行SAR目标识别。基于MSTAR的实验结果验证了本算法的有效性。实验结果证明:目标轮廓和阴影轮廓的结合,除反映本身包含的局部空间结构信息外,还能反映SAR目标的高度信息,较单一轮廓特征,是一种更为稳健的特征。 展开更多
关键词 sar目标识别 sar图像分割 sar图像轮廓 特征融合
在线阅读 下载PDF
基于非负稀疏表示的SAR图像目标识别方法 被引量:12
16
作者 丁军 刘宏伟 王英华 《电子与信息学报》 EI CSCD 北大核心 2014年第9期2194-2200,共7页
针对合成孔径雷达(SAR)图像目标识别中存在物体遮挡的情况,该文提出一种基于非负稀疏表示的分类方法。通过分析L0范数和L1范数最小化在求解非负稀疏表示问题上的区别,证明在一定条件下,L1范数最小化方法除了保持解的稀疏性还能得到与输... 针对合成孔径雷达(SAR)图像目标识别中存在物体遮挡的情况,该文提出一种基于非负稀疏表示的分类方法。通过分析L0范数和L1范数最小化在求解非负稀疏表示问题上的区别,证明在一定条件下,L1范数最小化方法除了保持解的稀疏性还能得到与输入信号更加相似的原子集合,因此也更加适用于分类问题中。在运动和静止目标获取与识别(MSTAR)数据集上的识别实验结果表明,采用L1范数的非负稀疏表示分类方法能达到较好的识别性能,并且相对传统方法对存在遮挡情况下的识别问题更稳健。 展开更多
关键词 sar目标识别 非负稀疏表示 L1范数最小化
在线阅读 下载PDF
基于多尺度稀疏字典的SAR图像目标识别方法 被引量:7
17
作者 雷磊 杨秋 李开明 《火力与指挥控制》 CSCD 北大核心 2017年第4期10-13,共4页
针对合成孔径雷达目标识别问题,提出一种基于多尺度稀疏字典的SAR图像目标识别方法。稀疏字典选择是稀疏表示中的关键问题之一,该方法利用小波多尺度分析构造过完备稀疏字典,将训练样本图像在小波解析域中进行小波多层分解,充分利用小... 针对合成孔径雷达目标识别问题,提出一种基于多尺度稀疏字典的SAR图像目标识别方法。稀疏字典选择是稀疏表示中的关键问题之一,该方法利用小波多尺度分析构造过完备稀疏字典,将训练样本图像在小波解析域中进行小波多层分解,充分利用小波多尺度分析突出图像局部特征的特点,并和过完备稀疏表示有效结合组成级联字典。通过求解测试样本相应的稀疏系数矢量并根据系数矢量中对应训练样本类别的重构误差判定目标类型。实验结果表明,该方法在识别前无需对SAR图像进行预处理,具有良好的识别效果。 展开更多
关键词 sar目标识别 稀疏表示 小波多尺度分析 稀疏字典
在线阅读 下载PDF
利用Gabor滤波分块特征对SAR目标识别 被引量:1
18
作者 胡风明 杨汝良 范学花 《武汉理工大学学报》 CAS CSCD 北大核心 2009年第23期122-125,133,共5页
提出了用Gabor滤波分块统计特征对SAR图像目标进行识别的方法。该方法首先提取预处理后SAR目标图像的低频子带图像,用Gabor滤波器对该子带图像进行滤波,对滤波后各子带图像进行分块,提取所有分块的统计特征作为目标识别特征,最后用支持... 提出了用Gabor滤波分块统计特征对SAR图像目标进行识别的方法。该方法首先提取预处理后SAR目标图像的低频子带图像,用Gabor滤波器对该子带图像进行滤波,对滤波后各子带图像进行分块,提取所有分块的统计特征作为目标识别特征,最后用支持向量机对该特征进行分类完成目标识别。使用MSTAR数据库中3类SAR目标数据对该方法进行目标识别验证,平均识别率达到93.85%。 展开更多
关键词 sar目标识别 低频子带图像 GABOR滤波器 分块统计特征 支持向量机
原文传递
面向SAR目标识别的深度卷积神经网络结构设计 被引量:10
19
作者 谷雨 徐英 《中国图象图形学报》 CSCD 北大核心 2018年第6期928-936,共9页
目的针对用于SAR(synthetic aperture radar)目标识别的深度卷积神经网络模型结构的优化设计难题,在分析卷积核宽度对分类性能影响基础上,设计了一种适用于SAR目标识别的深度卷积神经网络结构。方法首先基于二维随机卷积特征和具有单个... 目的针对用于SAR(synthetic aperture radar)目标识别的深度卷积神经网络模型结构的优化设计难题,在分析卷积核宽度对分类性能影响基础上,设计了一种适用于SAR目标识别的深度卷积神经网络结构。方法首先基于二维随机卷积特征和具有单个隐层的神经网络模型-超限学习机分析了卷积核宽度对SAR图像目标分类性能的影响;然后,基于上述分析结果,在实现空间特征提取的卷积层中采用多个具有不同宽度的卷积核提取目标的多尺度局部特征,设计了一种适用于SAR图像目标识别的深度模型结构;最后,在对MSTAR(moving and stationary target acquisition and recognition)数据集中的训练样本进行样本扩充基础上,设定了深度模型训练的超参数,进行了深度模型参数训练与分类性能验证。结果实验结果表明,对于具有较强相干斑噪声的SAR图像而言,采用宽度更大的卷积核能够提取目标的局部特征,提出的模型因能从输入图像提取目标的多尺度局部特征,对于10类目标的分类结果(包含非变形目标和变形目标两种情况)接近或优于已知文献的最优分类结果,目标总体分类精度分别达到了98.39%和97.69%,验证了提出模型结构的有效性。结论对于SAR图像目标识别,由于与可见光图像具有不同的成像机理,应采用更大的卷积核来提取目标的空间特征用于分类,通过对深度模型进行优化设计能够提高SAR图像目标识别的精度。 展开更多
关键词 sar目标识别 深度卷积神经网络 结构设计 随机权重 超限学习机
原文传递
基于免疫克隆高斯过程隐变量模型的SAR目标特征提取与识别 被引量:3
20
作者 张向荣 缑丽敏 +2 位作者 李阳阳 冯婕 焦李成 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第3期231-236,共6页
作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model,GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提... 作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model,GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提取及自动识别方法,其中利用改进的GPLVM进行特征提取,高斯过程分类进行目标识别.传统GPLVM使用共轭梯度法对似然函数进行优化,为避免梯度估值易受噪声干扰、步长对算法影响严重等缺点,提出基于免疫克隆选择算法的GPLVM,利用其具有快速收敛到全局最优的特性提高算法性能.实验结果表明,该算法不仅降低了特征维数,且提高了识别精度,从而验证了算法用于SAR图像目标识别的有效性. 展开更多
关键词 高斯过程隐变量模型 免疫克隆选择算法 特征提取 sar图像目标识别
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部