An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness...An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.展开更多
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special fe...The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.展开更多
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to pre...The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.展开更多
A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface i...A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.展开更多
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties....The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,compara...Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.展开更多
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat...In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.展开更多
In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the...In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the traditional methods used in chemical engineering becauseof the steep gradients of concentration and temperature.But,these difficulties are easy to be over-comed when the FEM is used.The integraded steps of solving this kind of problems by the FEMare presented in this paper.By applying the FEM to the two actual examples,the conclusion can bereached that the FEM has the advantages of simplicity and good accuracy.展开更多
A multinonlinear boundary element method is established dealing with elasto plastic finite deformation contact problem, and it is employed to analysis rolling process. With rollers as elastic bodies, workpieces as el...A multinonlinear boundary element method is established dealing with elasto plastic finite deformation contact problem, and it is employed to analysis rolling process. With rollers as elastic bodies, workpieces as elastio plastic bodies, rolling problem can be viewed as a frictional elasto plastic contact problem. With fewer assumptions in the simulation of the rolling process, a novel and accurate method is proposed for analysis of rolling problems.展开更多
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis ba...Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.展开更多
In this paper, we consider two methods, the Second order Central Difference Method (SCDM) and the Finite Element Method (FEM) with P1 triangular elements, for solving two dimensional general linear Elliptic Partial Di...In this paper, we consider two methods, the Second order Central Difference Method (SCDM) and the Finite Element Method (FEM) with P1 triangular elements, for solving two dimensional general linear Elliptic Partial Differential Equations (PDE) with mixed derivatives along with Dirichlet and Neumann boundary conditions. These two methods have almost the same accuracy from theoretical aspect with regular boundaries, but generally Finite Element Method produces better approximations when the boundaries are irregular. In order to investigate which method produces better results from numerical aspect, we apply these methods into specific examples with regular boundaries with constant step-size for both of them. The results which obtained confirm, in most of the cases, the theoretical results.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-sc...The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two metho...A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two methods, i.e., the finite element method (FEM) and the boundary element method (BEM). The original problem was restored with continuity and equilibrium conditions being satisfied on the interface of the two sub-regions using an iterative algorithm. To speed up the convergence rate of the iterative algorithm, a dynamically changing relaxation parameter during iteration was introduced. An advantage of the proposed algorithm is that the locations of the nodes on the interface of the two sub-domains can be inconsistent. The validity of the algorithm is demonstrated by the consistence of the results of a numerical example obtained by the proposed method and those by the FEM, the BEM and a present finite element-boundary element (FE-BE) coupling method.展开更多
For a class of two-point boundary value problems, by virtue of onedimensional projection interpolation, it is proved that the nodal recovery derivative obtained by Yuan's element energy projection (EEP) method has ...For a class of two-point boundary value problems, by virtue of onedimensional projection interpolation, it is proved that the nodal recovery derivative obtained by Yuan's element energy projection (EEP) method has the accuracy O(h^min{2k,k+4}) The theoretical analysis coincides the reported numerical results.展开更多
A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale met...A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.展开更多
In this article,we discuss the approach to solving a nonlinear PDE equation,specifically the p-Laplacian equation,with a general(nonlinear)boundary condition.We establish the existence and uniqueness of the solution,s...In this article,we discuss the approach to solving a nonlinear PDE equation,specifically the p-Laplacian equation,with a general(nonlinear)boundary condition.We establish the existence and uniqueness of the solution,subject to certain assumptions outlined in this paper.To solve our nonlinear problem using the Finite Element Method(FEM),we derive an appropriate variational formulation.Additionally,we introduce a study of the residual a posteriori-error indicator,establishing both upper and lower bounds to control the error.The upper bound is determined using averaging interpolators in some quasi-norms defined by Barrett and Liu.Furthermore,we prove the equivalence between the residual error and the true error e=u−u_(h).Lastly,we perform a simulation of the p-Laplacian problem in the L-shape domain using a Matlab program in two-dimensional space.展开更多
基金supported by the Innovation Training Project for Students in NUAA(No.2016C-X0010-129)the Key Laboratory of Aircraft Environment Control and Life Support(NUAA),Ministry of Industry and Information Technology
文摘An increment-dimensional scaled boundary finite element method (ID-SBFEM) is developed to solve the transient temperature field.To improve the accuracy of SBFEM,the effect of high frequency factor on dynamic stiffness is considered,and the first-order continued fraction technique is used.After the derivation,the SBFE equations are obtained,and the dimensions of thermal conduction,the thermal capacity matrix and the vector of the right side term in the equations are doubled.An example is presented to illustrate the feasibility and good accuracy of the proposed method.
基金The project supported by the National Natural Science Foundation of China (50579081)the Australian Research Council (DP0452681)The English text was polished by Keren Wang
文摘The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM) and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion. For dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
基金Supported by the Key Program of National Natural Science Foundation of China(No.51138001)the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51121005)+2 种基金the Fundamental Research Funds for the Central Universities(DUT13LK16)the Young Scientists Fund of National Natural Science Foundation of China(No.51109134)China Postdoctoral Science Foundation(No.2011M500814)
文摘The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
基金supported by the Open Project of Key Laboratory of Aerospace EDLA,CASC(No.EDL19092208)。
文摘A computational framework for parachute inflation is developed based on the immersed boundary/finite element approach within the open-source IBAMR library.The fluid motion is solved by Peskin's diffuse-interface immersed boundary(IB)method,which is attractive for simulating moving-boundary flows with large deformations.The adaptive mesh refinement technique is employed to reduce the computational cost while retain the desired resolution.The dynamic response of the parachute is solved with the finite element approach.The canopy and cables of the parachute system are modeled with the hyperelastic material.A tether force is introduced to impose rigidity constraints for the parachute system.The accuracy and reliability of the present framework is validated by simulating inflation of a constrained square plate.Application of the present framework on several canonical cases further demonstrates its versatility for simulation of parachute inflation.
基金This research wasfinanciallysupported bythe National Natural Science Foundation of China(Grant No.50639030)a Programfor Changjiang ScholarsInnovative Research Teamin Dalian University of Technology(Grant No.IRTO420)
文摘The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coeffcient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coeffcient and the transmission coefficient are given in the current study.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金National Natural Science Foundation of China(No.51674280,51774308,51704033,51722406,51950410591)Shandong Provincial Natural Science Foundation(ZR2019JQ21,JQ201808)+3 种基金the Fundamental Research Funds for the Central Universities(No.20CX02113A)National Science and Technology Major Project(2016ZX05014-000407)Program for Changjiang Scholars and Innovative Research Team in University(IRT_16R69)PetroChina Innovation Foundation(No.2018D-5007-0210)。
文摘Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats.
文摘In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided.
基金Project financially supported by scientific research foundation coferring to Ph.D.
文摘In this paper,finite element method(FEM)is used to solve two-dimensional diffu-sion-reaction equations of boundary layer type.This kind of equations are usually too complicatedand diffcult to be solved by applying the traditional methods used in chemical engineering becauseof the steep gradients of concentration and temperature.But,these difficulties are easy to be over-comed when the FEM is used.The integraded steps of solving this kind of problems by the FEMare presented in this paper.By applying the FEM to the two actual examples,the conclusion can bereached that the FEM has the advantages of simplicity and good accuracy.
文摘A multinonlinear boundary element method is established dealing with elasto plastic finite deformation contact problem, and it is employed to analysis rolling process. With rollers as elastic bodies, workpieces as elastio plastic bodies, rolling problem can be viewed as a frictional elasto plastic contact problem. With fewer assumptions in the simulation of the rolling process, a novel and accurate method is proposed for analysis of rolling problems.
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
基金Projects(51475101,51305091,51305092)supported by the National Natural Science Foundation of China
文摘Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.
文摘In this paper, we consider two methods, the Second order Central Difference Method (SCDM) and the Finite Element Method (FEM) with P1 triangular elements, for solving two dimensional general linear Elliptic Partial Differential Equations (PDE) with mixed derivatives along with Dirichlet and Neumann boundary conditions. These two methods have almost the same accuracy from theoretical aspect with regular boundaries, but generally Finite Element Method produces better approximations when the boundaries are irregular. In order to investigate which method produces better results from numerical aspect, we apply these methods into specific examples with regular boundaries with constant step-size for both of them. The results which obtained confirm, in most of the cases, the theoretical results.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
基金supported by the National Natural Science Foundation of China(Nos.10801042 and 11171257)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20104410120001)
文摘The prediction of the mechanical and electric properties of piezoelectric fibre composites has become an active research area in recent years. By means of introducing a boundary layer problem, some new kinds of two-scale finite element methods for solutions to the electric potential and the displacement for composite material in periodic struc- ture under the coupled piezoelectricity are derived. The coupled two-scale relation of the electric potential and the displacement is set up, and some finite element approximate estimates and numerical examples which show the effectiveness of the method are presented.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
基金Project supported by China Postdoctoral Science Foundation (No.2004036145)
文摘A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two methods, i.e., the finite element method (FEM) and the boundary element method (BEM). The original problem was restored with continuity and equilibrium conditions being satisfied on the interface of the two sub-regions using an iterative algorithm. To speed up the convergence rate of the iterative algorithm, a dynamically changing relaxation parameter during iteration was introduced. An advantage of the proposed algorithm is that the locations of the nodes on the interface of the two sub-domains can be inconsistent. The validity of the algorithm is demonstrated by the consistence of the results of a numerical example obtained by the proposed method and those by the FEM, the BEM and a present finite element-boundary element (FE-BE) coupling method.
基金Project supported by the National Natural Science Foundation of China (Nos. 10571046, 10371038)
文摘For a class of two-point boundary value problems, by virtue of onedimensional projection interpolation, it is proved that the nodal recovery derivative obtained by Yuan's element energy projection (EEP) method has the accuracy O(h^min{2k,k+4}) The theoretical analysis coincides the reported numerical results.
基金Supported by the National Natural Science Foundation of China(51105195,51075204)the Aeronautical Science Foundation of China(2011ZB52024)
文摘A straightforward multi-scale boundary element method is proposed for global and local mechanical analysis of heterogeneous material.The method is more accurate and convenient than finite element based multi-scale method.The formulations of this method are derived by combining the homogenization approach and the fundamental equations of boundary element method.The solution gives the convenient formulations to compute global elastic constants and the local stress field.Finally,two numerical examples of porous material are presented to prove the accuracy and the efficiency of the proposed method.The results show that the method does not require the iteration to obtain the solution of the displacement in micro level.
文摘In this article,we discuss the approach to solving a nonlinear PDE equation,specifically the p-Laplacian equation,with a general(nonlinear)boundary condition.We establish the existence and uniqueness of the solution,subject to certain assumptions outlined in this paper.To solve our nonlinear problem using the Finite Element Method(FEM),we derive an appropriate variational formulation.Additionally,we introduce a study of the residual a posteriori-error indicator,establishing both upper and lower bounds to control the error.The upper bound is determined using averaging interpolators in some quasi-norms defined by Barrett and Liu.Furthermore,we prove the equivalence between the residual error and the true error e=u−u_(h).Lastly,we perform a simulation of the p-Laplacian problem in the L-shape domain using a Matlab program in two-dimensional space.