期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS 被引量:1
1
作者 周勇 尤进红 王晓婧 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1113-1127,共15页
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop... This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 展开更多
关键词 partially linear regression model varying-coefficient profile leastsquares error variance strong convergence rate law of iterated logarithm
在线阅读 下载PDF
Efficient Shrinkage Estimation about the Partially Linear Varying Coefficient Model with Random Effect for Longitudinal Data
2
作者 Wanbin Li 《Open Journal of Statistics》 2016年第5期862-872,共12页
In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero c... In this paper, an efficient shrinkage estimation procedure for the partially linear varying coefficient model (PLVC) with random effect is considered. By selecting the significant variable and estimating the nonzero coefficient, the model structure specification is accomplished by introducing a novel penalized estimating equation. Under some mild conditions, the asymptotic properties for the proposed model selection and estimation results, such as the sparsity and oracle property, are established. Some numerical simulation studies and a real data analysis are presented to examine the finite sample performance of the procedure. 展开更多
关键词 partially linear varying coefficient model Mixed Effect Penalized Estimating Equation
在线阅读 下载PDF
A Simulation Study on Comparing General Class of Semiparametric Transformation Models for Survival Outcome with Time-Varying Coefficients and Covariates
3
作者 Yemane Hailu Fissuh Tsegay Giday Woldu +1 位作者 Idriss Abdelmajid Idriss Ahmed Abebe Zewdie Kebebe 《Open Journal of Statistics》 2019年第2期169-180,共12页
The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametr... The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible. 展开更多
关键词 Estimating Equation semiparametric Transformation models TIME-TO-EVENT Outcomes TIME-varying coefficientS TIME-varying COVARIATE
在线阅读 下载PDF
Generalized Likelihood Ratio Tests for Varying-Coefficient Models with Censored Data
4
作者 Rong Jiang Wei-Min Qian 《Open Journal of Statistics》 2011年第1期19-23,共5页
In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null d... In this paper, we extend the generalized likelihood ratio test to the varying-coefficient models with censored data. We investigate the asymptotic behavior of the proposed test and demonstrate that its limiting null distribution follows a distribution, with the scale constant and the number of degree of freedom being independent of nuisance parameters or functions, which is called the wilks phenomenon. Both simulated and real data examples are given to illustrate the performance of the testing approach. 展开更多
关键词 varying coefficient model GENERALIZED LIKELIHOOD RATIO Test Local linear Method Wilks Phenomenon CENSORING
在线阅读 下载PDF
Variable Selection for Semiparametric Varying-Coefficient Partially Linear Models with Missing Response at Random 被引量:9
5
作者 Pei Xin ZHAO Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第11期2205-2216,共12页
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo... In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 semiparametric varying-coefficient partially linear model variable selection SCAD missing data
原文传递
TESTING SERIAL CORRELATION IN SEMIPARAMETRIC VARYING COEFFICIENT PARTIALLY LINEAR ERRORS-IN-VARIABLES MODEL 被引量:5
6
作者 Xuemei HU Feng LIU Zhizhong WANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期483-494,共12页
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ... The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power. 展开更多
关键词 Asymptotic normality local linear regression measurement error modified profile leastsquares estimation partial linear model testing serial correlation varying coefficient model.
原文传递
Empirical Likelihood Based Diagnostics for Heteroscedasticity in Semiparametric Varying-Coefficient Partially Linear Models with Missing Responses 被引量:2
7
作者 LIU Feng GAO Weiqing +2 位作者 HE Jing FU Xinwei KANG Xinmei 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第3期1175-1188,共14页
This paper proposes an empirical likelihood based diagnostic technique for heteroscedasticity for semiparametric varying-coefficient partially linear models with missing responses. Firstly, the authors complement the ... This paper proposes an empirical likelihood based diagnostic technique for heteroscedasticity for semiparametric varying-coefficient partially linear models with missing responses. Firstly, the authors complement the missing response variables by regression method. Then, the empirical likelihood method is introduced to study the heteroscedasticity of the semiparametric varying-coefficient partially linear models with complete-case data. Finally, the authors obtain the finite sample property by numerical simulation. 展开更多
关键词 Empirical likelihood ratio HETEROSCEDASTICITY response missing with MAR semiparametric varying-coefficient partially linear models
原文传递
Sieve M-estimation for semiparametric varying-coefficient partially linear regression model 被引量:1
8
作者 HU Tao 1,2 & CUI HengJian 1,2 1 School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing 100875,China 2 School of Mathematical Sciences,Capital Normal University,Beijing 100048,China 《Science China Mathematics》 SCIE 2010年第8期1995-2010,共16页
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear ... This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ(·).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method. 展开更多
关键词 partly linear model varying-coefficient robustness optimal convergence rate asymptotic NORMALITY
原文传递
Shrinkage Estimation of Semiparametric Model with Missing Responses for Cluster Data
9
作者 Mingxing Zhang Jiannan Qiao +1 位作者 Huawei Yang Zixin Liu 《Open Journal of Statistics》 2015年第7期768-776,共9页
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is... This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively. 展开更多
关键词 semiparametric partially linear varying-coefficient model MISSING RESPONSES CLUSTER DATA Group Lasso
在线阅读 下载PDF
Testing Serial Correlation in Semiparametric Varying-Coefficient Partially Linear EV Models
10
作者 Xue-mei Hu Zhi-zhong Wang Feng Liu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第1期99-116,共18页
This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,... This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,η^T)^T] =0, Cov[(ε,η^T)^T] = σ^2Ip+1. The estimators of interested regression parameters /3 , and the model error variance σ2, as well as the nonparametric components α(T), are constructed. Under some regular conditions, we show that the estimators of the unknown vector β and the unknown parameter σ2 are strongly consistent and asymptotically normal and that the estimator of α(T) achieves the optimal strong convergence rate of the usual nonparametric regression. Based on these estimators and asymptotic properties, we propose the VN,p test statistic and empirical log-likelihood ratio statistic for testing serial correlation in the model. The proposed statistics are shown to have asymptotic normal or chi-square distributions under the null hypothesis of no serial correlation. Some simulation studies are conducted to illustrate the finite sample performance of the proposed tests. 展开更多
关键词 varying-coefficient model partial linear EV model the generalized least squares estimation serial correlation empirical likelihood
原文传递
Efficient Estimation for Semiparametric Varying-Coefficient Partially Linear Regression Models with Current Status Data
11
作者 Tao Hu Heng-jian Cui Xing-wei Tong 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第2期195-204,共10页
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalizatio... This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach. 展开更多
关键词 Partly linear model varying-coefficient current status data asymptotically efficient estimator sieve MLE
原文传递
Penalized profile least squares-based statistical inference for varying coefficient partially linear errors-in-variables models 被引量:2
12
作者 Guo-liang Fan Han-ying Liang Li-xing Zhu 《Science China Mathematics》 SCIE CSCD 2018年第9期1677-1694,共18页
The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some sp... The purpose of this paper is two fold. First, we investigate estimation for varying coefficient partially linear models in which covariates in the nonparametric part are measured with errors. As there would be some spurious covariates in the linear part, a penalized profile least squares estimation is suggested with the assistance from smoothly clipped absolute deviation penalty. However, the estimator is often biased due to the existence of measurement errors, a bias correction is proposed such that the estimation consistency with the oracle property is proved. Second, based on the estimator, a test statistic is constructed to check a linear hypothesis of the parameters and its asymptotic properties are studied. We prove that the existence of measurement errors causes intractability of the limiting null distribution that requires a Monte Carlo approximation and the absence of the errors can lead to a chi-square limit. Furthermore, confidence regions of the parameter of interest can also be constructed. Simulation studies and a real data example are conducted to examine the performance of our estimators and test statistic. 展开更多
关键词 diverging number of parameters varying coefficient partially linear model penalized likelihood SCAD variable selection
原文传递
Variable Selection for Generalized Varying Coefficient Partially Linear Models with Diverging Number of Parameters 被引量:1
13
作者 Zheng-yan Lin Yu-ze Yuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期237-246,共10页
Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and... Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and selection of significant variables for the parametric portion. In this paper, we consider a variable selection procedure by combining basis function approximation with SCAD penalty. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of tuning parameters, we establish the consistency and sparseness of this procedure. 展开更多
关键词 generalized linear model varying coefficient high dimensionality SCAD basis function.
原文传递
Asymptotic Normality of Estimators in Partially Linear Varying Coefficient Models
14
作者 魏传华 吴喜之 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期877-885,共9页
Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the para... Partially linear varying coefficient model is a generalization of partially linear model and varying coefficient model and is frequently used in statistical modeling. In this paper, we construct estimators of the parametric and nonparametric components by Profile least-squares procedure which is based on local linear smoothing. The resulting estimators are shown to be asymptotically normal with heteroscedastic error. 展开更多
关键词 asymptotic normality HETEROSCEDASTICITY profile least-squares approach partially linear varying coeffiient model local linear smoothing.
在线阅读 下载PDF
Efficient Estimation of a Varying-coefficient Partially Linear Binary Regression Model
15
作者 TaoHU Heng Jian CUI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第11期2179-2190,共12页
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary... This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method. 展开更多
关键词 partially linear model varying-coefficient binary regression asymptotically efficient estimator sieve MLE
原文传递
Generalized Profile LSE in Varying-Coefficient Partially Linear Models with Measurement Errors
16
作者 Yun-bei MA Jin-hong YOU Yong ZHOU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期477-490,共14页
This paper is concerned with the estimating problem of a semiparametric varying-coefficient partially linear errors-in-variables model Yi=Xτiβ+Zτiα(Ui)+εi , Wi=Xi+ξi,i=1, · · · , n. Due to me... This paper is concerned with the estimating problem of a semiparametric varying-coefficient partially linear errors-in-variables model Yi=Xτiβ+Zτiα(Ui)+εi , Wi=Xi+ξi,i=1, · · · , n. Due to measurement errors, the usual profile least square estimator of the parametric component, local polynomial estimator of the nonparametric component and profile least squares based estimator of the error variance are biased and inconsistent. By taking the measurement errors into account we propose a generalized profile least squares estimator for the parametric component and show it is consistent and asymptotically normal. Correspondingly, the consistent estimation of the nonparametric component and error variance are proposed as well. These results may be used to make asymptotically valid statistical inferences. Some simulation studies are conducted to illustrate the finite sample performance of these proposed estimations. 展开更多
关键词 semiparametric modeling varying-coefficient measurement error local polynomial profile least squares asymptotic normality
原文传递
Inference on Varying-Coefficient Partially Linear Regression Model
17
作者 Jing-yan FENG Ri-quan ZHANG Yi-qiang LU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第1期139-156,共18页
The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the l... The varying-coefficient partially linear regression model is proposed by combining nonparametric and varying-coefficient regression procedures. Wong, et al. (2008) proposed the model and gave its estimation by the local linear method. In this paper its inference is addressed. Based on these estimates, the generalized like- lihood ratio test is established. Under the null hypotheses the normalized test statistic follows a x2-distribution asymptotically, with the scale constant and the degrees of freedom being independent of the nuisance param- eters. This is the Wilks phenomenon. Furthermore its asymptotic power is also derived, which achieves the optimal rate of convergence for nonparametric hypotheses testing. A simulation and a real example are used to evaluate the performances of the testing procedures empirically. 展开更多
关键词 asymptotic normality varying-coefficient partially linear regression model generalized likelihoodratio test Wilks phenomenon xi-distribution.
原文传递
Partially Time-varying Coefficient Linear Rate Model for the Recurrent Event Data
18
作者 Xiao-lin CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第3期681-698,共18页
In [13], Schaubel et al. proposed a semiparametric partially linear rate model for the statistical analysis of recurrent event data. But they only considered the model with time-independent covariate effects. In this ... In [13], Schaubel et al. proposed a semiparametric partially linear rate model for the statistical analysis of recurrent event data. But they only considered the model with time-independent covariate effects. In this paper, rate function of the recurrent event is modeled by a semipaxametric partially linear function which can include the time-varying effects. We propose the method of generalized estimating equations to make inferences about both the time-varying effects and time-independent effects. The large sample properties are established, while extensive simulation studies are carried out to examine the proposed procedures. At last, we apply the procedures to the well-known bladder cancer study. 展开更多
关键词 partially linear rate model empirical process recurrent event time-varying effects.
原文传递
部分线性变系数分位数模型的贝叶斯P-样条估计
19
作者 杨飘 黄介武 《智能计算机与应用》 2025年第1期88-94,共7页
部分线性变系数模型是一类重要的半参数回归模型,针对该模型的参数估计问题,本文利用贝叶斯P-样条方法近似非参数部分的未知光滑函数,进而利用非对称拉普拉斯分布实现贝叶斯分位数回归,推导出所有未知参数的条件后验分布,通过Gibbs抽样... 部分线性变系数模型是一类重要的半参数回归模型,针对该模型的参数估计问题,本文利用贝叶斯P-样条方法近似非参数部分的未知光滑函数,进而利用非对称拉普拉斯分布实现贝叶斯分位数回归,推导出所有未知参数的条件后验分布,通过Gibbs抽样和Metropolis-Hastings算法获得参数的估计值。通过数值模拟对贝叶斯P-样条方法与B-样条方法的估计效果进行比较分析,结果显示在均方误差和标准差准则下,贝叶斯P-样条方法在不同分位点上的估计效果更优。 展开更多
关键词 部分线性变系数模型 贝叶斯P-样条 B-样条 GIBBS抽样 均方误差
在线阅读 下载PDF
Asymptotic Properties in Semiparametric Partially Linear Regression Models for Functional Data 被引量:1
20
作者 Tao ZHANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期631-644,共14页
We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are... We consider the semiparametric partially linear regression models with mean function XTβ + g(z), where X and z are functional data. The new estimators of β and g(z) are presented and some asymptotic results are given. The strong convergence rates of the proposed estimators are obtained. In our estimation, the observation number of each subject will be completely flexible. Some simulation study is conducted to investigate the finite sample performance of the proposed estimators. 展开更多
关键词 longitudinal data functional data semiparametric partially linear regression models asymptotic properties
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部