期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Upper crustal azimuthal anisotropy and seismogenic tectonics of the Hefei segment of the Tan-Lu Fault Zone from ambient noise tomography
1
作者 Cheng Li HuaJianYao +4 位作者 Song Luo HaiJiang Zhang LingLi Li XiaoLi Wang ShengJun Ni 《Earth and Planetary Physics》 2025年第2期253-265,共13页
The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structur... The Tan-Lu Fault Zone is a large NNE-trending fault zone that has a substantial effect on the development of eastern China and its earthquake disaster prevention efforts. Aiming at the azimuthally anisotropic structure in the upper crust and seismogenic tectonics in the Hefei segment of this fault, we collected phase velocity dispersion data of fundamental mode Rayleigh waves from ambient noise cross-correlation functions of ~400 temporal seismographs in an area of approximately 80 × 70 km along the fault zone. The period band of the dispersion data was ~0.5–10 s. We inverted for the upper crustal three-dimensional(3-D) shear velocity model with azimuthal anisotropy from the surface to 10 km depth by using a 3-D direct azimuthal anisotropy inversion method. The inversion result shows the spatial distribution characteristics of the tectonic units in the upper crust. Additionally, the deformation of the Tan-Lu Fault Zone and its conjugated fault systems could be inferred from the anisotropy model. In particular, the faults that have remained active from the early and middle Pleistocene control the anisotropic characteristics of the upper crustal structure in this area. The direction of fast axes near the fault zone area in the upper crust is consistent with the strike of the faults, whereas for the region far away from the fault zone, the direction of fast axes is consistent with the direction of the regional principal stress caused by plate movement. Combined with the azimuthal anisotropy models in the deep crust and uppermost mantle from the surface wave and Pn wave, the different anisotropic patterns caused by the Tan-Lu Fault Zone and its conjugated fault system nearby are shown in the upper and lower crust. Furthermore,by using the double-difference method, we relocated the Lujiang earthquake series, which contained 32 earthquakes with a depth shallower than 10 km. Both the Vs model and earthquake relocation results indicate that earthquakes mostly occurred in the vicinity of structural boundaries with fractured media, with high-level development of cracks and small-scale faults jammed between more rigid areas. 展开更多
关键词 ambient noise tomography azimuthal anisotropy upper crust seismogenic structure the tan-lu fault Zone Hefei segment
在线阅读 下载PDF
K-Ar dating of extensional fault gouge from the Yi-Shu segment of the Tan-Lu fault zone 被引量:5
2
作者 WANG YongSheng ZHU Guang +3 位作者 HU ZhaoQi ZHANG BiLong XIANG BiWei XIE ChengLong 《Science China Earth Sciences》 SCIE EI CAS 2009年第4期489-503,共15页
Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. T... Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. These faults were developed due to their reactivities, containing gouge and cutting the graben sediments. Detailed fieldwork demonstrates that the faults experienced sinistral transtensional moment related to regional NE-SW extension during the reactivity. X-ray diffraction (XRD) analysis of the finest gouge samples gives illite crystallinity values higher than 0.42°Δ2θ, indicating temperatures experienced by the gouge samples were less than 150°C. From the relation between K-Ar data and proportions of detrital illite in different size fractions of the gouge samples, we conclude that refaulting for the western boundary fault of the TLFZ, abbreviated to F4, took place at ca. 90 Ma and for the eastern boundary fault, abbreviated to F1, happened from 70 to 60 Ma. During the two phases of reactivity imposed by the same NE-SW extension, the TLFZ experienced uplifting and no sediments were deposited in the two grabens. It is suggested that the TLFZ experienced extension during the Late Cretaceous, which supports the inference that lithospheric thinning was still undergoing in the east of the North China Craton during the Late Cretaceous magmatic hiatus. 展开更多
关键词 Yi-Shu segment of the tan-lu fault zone EXTENSIONAL fault GOUGE K-Ar dating of ILLITE X-ray diffraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部