An unstructured model FVCOM(The Unstructured Grid Finite Volume Community Ocean Model)with sink momentum term was applied to simulate the tidal current field in Zhoushan Archipelago,China,with focus on the region name...An unstructured model FVCOM(The Unstructured Grid Finite Volume Community Ocean Model)with sink momentum term was applied to simulate the tidal current field in Zhoushan Archipelago,China,with focus on the region named PuHu Channel between Putuo Island and Hulu Island.The model was calibrated with several measurements in the channel,and the model perform-ance was validated.An examination of the spatial and temporal distributions of tidal energy resources based on the numerical simula-tion revealed that the greatest power density of tidal energy during spring tide is 3.6kWm^(−2)at the northern area of the channel.Two parameters were introduced to characterize the generation duration of the tidal array that causes the temporal variation of tidal current energy.The annual average available energy in the channel was found to be approximately 2.6MW.The annual generating hours at rated power was found to be 1800 h when the installed capacity of tidal array is approximately 12MW.A site for the tidal array with 25 turbines was selected,and the layout of the array was configured based on the EMEC specifications.Hydrodynamic influence due to the deployment of the tidal array was simulated by the modified FVCOM model.The simulation showed that the tidal level did not significantly change because of the operation of the tidal array.The velocity reduction covered a 2km^(2)area of the downstream the tidal array,with a maximum velocity reduction of 8cms−1 at mid-flood tide,whereas the streamwise velocity on both sides of the farm increased slightly.展开更多
Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposi...Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposition method, which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy, was employed to estimate the theoretical tidal energy resources and developable energy resources, and to analyze the hydrodynamic effect of the tidal power station. This innovative approach has the advantage of linking physical oceanography with engineering problems. The results indicate that the theoretical annual tidal energy resources is about 2x 108 kwh under the influence of tidal power station; Optimized power installation is confirmed according to power generation curve from numerical analysis; the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation. The electricity generation time and power are 3479 hours and 2.55~104KW, respectively. The power station has no effect on the tide pattern which is semi-diumal tide in both two conditions, but the amplitudes of main constituents apparently decrease in the area near the dam, with the ME decreasing the most, about 62.92 cm. The tidal prism shrinks to 2.28×107 m3, but can still meet the flow requirement for tidal power generation. The existence of station increases the flow rate along the waterway and enhances the residual current. There are two opposite vortexes formed on the east side beside the dam of the station, which leads to pollutants gathering.展开更多
基金This work was supported by the National Key R&D Program of China(Nos.2019YFE0102500,2019YFB1504401,2019YFE0102500 and 2016YFC1401800).The au-thors would like to thank the FVCOM Development Group for their modeling support.
文摘An unstructured model FVCOM(The Unstructured Grid Finite Volume Community Ocean Model)with sink momentum term was applied to simulate the tidal current field in Zhoushan Archipelago,China,with focus on the region named PuHu Channel between Putuo Island and Hulu Island.The model was calibrated with several measurements in the channel,and the model perform-ance was validated.An examination of the spatial and temporal distributions of tidal energy resources based on the numerical simula-tion revealed that the greatest power density of tidal energy during spring tide is 3.6kWm^(−2)at the northern area of the channel.Two parameters were introduced to characterize the generation duration of the tidal array that causes the temporal variation of tidal current energy.The annual average available energy in the channel was found to be approximately 2.6MW.The annual generating hours at rated power was found to be 1800 h when the installed capacity of tidal array is approximately 12MW.A site for the tidal array with 25 turbines was selected,and the layout of the array was configured based on the EMEC specifications.Hydrodynamic influence due to the deployment of the tidal array was simulated by the modified FVCOM model.The simulation showed that the tidal level did not significantly change because of the operation of the tidal array.The velocity reduction covered a 2km^(2)area of the downstream the tidal array,with a maximum velocity reduction of 8cms−1 at mid-flood tide,whereas the streamwise velocity on both sides of the farm increased slightly.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010201
文摘Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposition method, which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy, was employed to estimate the theoretical tidal energy resources and developable energy resources, and to analyze the hydrodynamic effect of the tidal power station. This innovative approach has the advantage of linking physical oceanography with engineering problems. The results indicate that the theoretical annual tidal energy resources is about 2x 108 kwh under the influence of tidal power station; Optimized power installation is confirmed according to power generation curve from numerical analysis; the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation. The electricity generation time and power are 3479 hours and 2.55~104KW, respectively. The power station has no effect on the tide pattern which is semi-diumal tide in both two conditions, but the amplitudes of main constituents apparently decrease in the area near the dam, with the ME decreasing the most, about 62.92 cm. The tidal prism shrinks to 2.28×107 m3, but can still meet the flow requirement for tidal power generation. The existence of station increases the flow rate along the waterway and enhances the residual current. There are two opposite vortexes formed on the east side beside the dam of the station, which leads to pollutants gathering.