In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary ...The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is co...A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to its normal form and the reduced problem is solved by finite difference method taking variable mesh. To support the efficiency of the method, several numerical examples have been considered.展开更多
A numerical treatment for self-adjoint singularly perturbed second-order two-point boundary value problems using trigonometric quintic B-splines is presented,which depend on different engineering applications.The meth...A numerical treatment for self-adjoint singularly perturbed second-order two-point boundary value problems using trigonometric quintic B-splines is presented,which depend on different engineering applications.The method is found to have a truncation error of O(h 6)and converges to the exact solution at O(h 4).The numerical examples show that our method is very effective and the maximum absolute error is acceptable.展开更多
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching...The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching principle.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
A boundary value problems for functional differenatial equations, with nonlinear boundary condition, is studied by the theorem of differential inequality. Using new method to construct the upper solution and lower sol...A boundary value problems for functional differenatial equations, with nonlinear boundary condition, is studied by the theorem of differential inequality. Using new method to construct the upper solution and lower solution, sufficient conditions for the existence of the problems' solution are established. A uniformly valid asymptotic expansions of the solution is also given.展开更多
The singularly perturbed nonlinear noniocal initial boundary value problem for reaction diffusion equations is discussed. Under suitable conditions, the outer solution of the original problem is obtained. By using the...The singularly perturbed nonlinear noniocal initial boundary value problem for reaction diffusion equations is discussed. Under suitable conditions, the outer solution of the original problem is obtained. By using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. By using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied, and by educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are considered.展开更多
The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the u...The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the uniform validity of solution is proved by using the differential inequalities.展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform i...In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution.展开更多
A class of singularly perturbed boundary value problems arising from the catalytic reactions in chemical engineering is observed. That kind of p roblems exhibits the behavior of nonexponentially decayed boundary la...A class of singularly perturbed boundary value problems arising from the catalytic reactions in chemical engineering is observed. That kind of p roblems exhibits the behavior of nonexponentially decayed boundary layer, and he nce the study of asymptotic behavior of their solutions seems more diffcult. The uniformly valid asymptotic expansions of solutions as well as their derivatives are given via the upper and lower solutions method, and those estimates seem qu ite accurate.展开更多
In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the g...In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the given boundary value problems, and hence we improve the existing results.展开更多
We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The ac...We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.展开更多
In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid a...In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid asymptotic expansion of solution is obtained.展开更多
In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solu...In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.展开更多
The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of...The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.展开更多
The shock solution for the semilinear singularly perturbed two-point boundary value problem was studied. Under suitable conditions and using the theory of differential inequalities, the existence and asymptotic behavi...The shock solution for the semilinear singularly perturbed two-point boundary value problem was studied. Under suitable conditions and using the theory of differential inequalities, the existence and asymptotic behavior of the solution for the original boundary value problems are discussed. The uniformly effective asymptotic expansion and estimation of solution u(x, ε) were obtained.展开更多
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
文摘The singularly perturbed elliptic equation boundary value problem with turning point is considered. Using the method of multiple scales and the comparison theorem, the asymptotic behavior of solution for the boundary value problem is studied.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘A numerical method based on finite difference method with variable mesh is given for self-adjoint singularly perturbed two-point boundary value problems. To obtain parameter- uniform convergence, a variable mesh is constructed, which is dense in the boundary layer region and coarse in the outer region. The uniform convergence analysis of the method is discussed. The original problem is reduced to its normal form and the reduced problem is solved by finite difference method taking variable mesh. To support the efficiency of the method, several numerical examples have been considered.
文摘A numerical treatment for self-adjoint singularly perturbed second-order two-point boundary value problems using trigonometric quintic B-splines is presented,which depend on different engineering applications.The method is found to have a truncation error of O(h 6)and converges to the exact solution at O(h 4).The numerical examples show that our method is very effective and the maximum absolute error is acceptable.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
基金Supported by the NNSF of China(10901003) Supported by the Natural Science Foundation from the Education Bureau of Anhui Province(KJ2011A135)
文摘The existence and asymptotic behavior of solution for a class of quasilinear singularly perturbed boundary value problems are discussed under suitable conditions by the theory of differential inequalities and matching principle.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘A boundary value problems for functional differenatial equations, with nonlinear boundary condition, is studied by the theorem of differential inequality. Using new method to construct the upper solution and lower solution, sufficient conditions for the existence of the problems' solution are established. A uniformly valid asymptotic expansions of the solution is also given.
基金The NNSF (90111011 and 10471039) of Chinathe National Key Project for Basics Research (2003CB415101-03 and 2004CB418304)the Key Project of the Chinese Academy of Sciences (KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission (N.E03004)
文摘The singularly perturbed nonlinear noniocal initial boundary value problem for reaction diffusion equations is discussed. Under suitable conditions, the outer solution of the original problem is obtained. By using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. By using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems are studied, and by educing some relational inequalities the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are considered.
文摘The singularly perturbed nonlinear boundary value problems are considered.Using the stretched variable and the method of boundary layer correction,the formal asymptotic expansion of solution is obtained.And then the uniform validity of solution is proved by using the differential inequalities.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
文摘In this paper, authors describe a Liouville-Green transform to solve a singularly perturbed two-point boundary value problem with right end boundary layer in the interval [0, 1]. They reply Liouville-Green transform into original given problem and finds the numerical solution. Then they implemented this method on two linear examples with right end boundary layer which nicely approximate the exact solution.
文摘A class of singularly perturbed boundary value problems arising from the catalytic reactions in chemical engineering is observed. That kind of p roblems exhibits the behavior of nonexponentially decayed boundary layer, and he nce the study of asymptotic behavior of their solutions seems more diffcult. The uniformly valid asymptotic expansions of solutions as well as their derivatives are given via the upper and lower solutions method, and those estimates seem qu ite accurate.
文摘In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the given boundary value problems, and hence we improve the existing results.
文摘We use fifth order B-spline functions to construct the numerical method for solving singularly perturbed boundary value problems. We use B-spline collocation method, which leads to a tri-diagonal linear system. The accuracy of the proposed method is demonstrated by test problems. The numerical results are found in good agreement with exact solutions.
文摘In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid asymptotic expansion of solution is obtained.
基金Supported by the Natural Science Foundation of Zhejiang Provivce (102009)Supported by the Natural Foundation of Huzhou Teacher's College(200302)
文摘In this paper, a class of strongly nonlinear singular perturbed boundary value problems are coasidered by the theory of differential inequalities and the correction of boundary layer, under which the existence of solution is proved and the uniformly valid asymptotic expansions is obtained as well.
文摘The singularly perturbed boundary value problem for the nonlinear boundary conditions is considered.Under suitable conditions,the asymptotic behavior of solution for the original problems is studied by using theory of differential inequalities.
文摘The shock solution for the semilinear singularly perturbed two-point boundary value problem was studied. Under suitable conditions and using the theory of differential inequalities, the existence and asymptotic behavior of the solution for the original boundary value problems are discussed. The uniformly effective asymptotic expansion and estimation of solution u(x, ε) were obtained.