期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Large Language Models in Software Engineering Education: A Preliminary Study on Software Requirements Engineering Courses
1
作者 Feng Chen Shaomin Zhu +1 位作者 Xin Liu Ying Qian 《计算机教育》 2025年第3期24-33,共10页
The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.... The advent of large language models(LLMs)has made knowledge acquisition and content creation increasingly easier and cheaper,which in turn redefines learning and urges transformation in software engineering education.To do so,there is a need to understand the impact of LLMs on software engineering education.In this paper,we conducted a preliminary case study on three software requirements engineering classes where students are allowed to use LLMs to assist in their projects.Based on the students’experience,performance,and feedback from a survey conducted at the end of the courses,we characterized the challenges and benefits of applying LLMs in software engineering education.This research contributes to the ongoing discourse on the integration of LLMs in education,emphasizing both their prominent potential and the need for balanced,mindful usage. 展开更多
关键词 Large language models software engineering software requirements engineering EDUCATION
在线阅读 下载PDF
Automatic Semantic Analysis of Software Requirements Through Machine Learning and Ontology Approach 被引量:1
2
作者 王英林 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第6期692-701,共10页
Nowadays,software requirements are still mainly analyzed manually,which has many drawbacks(such as a large amount of labor consumption,inefficiency,and even inaccuracy of the results).The problems are even worse in do... Nowadays,software requirements are still mainly analyzed manually,which has many drawbacks(such as a large amount of labor consumption,inefficiency,and even inaccuracy of the results).The problems are even worse in domain analysis scenarios because a large number of requirements from many users need to be analyzed.In this sense,automatic analysis of software requirements can bring benefits to software companies.For this purpose,we proposed an approach to automatically analyze software requirement specifications(SRSs) and extract the semantic information.In this approach,a machine learning and ontology based semantic role labeling(SRL) method was used.First of all,some common verbs were calculated from SRS documents in the E-commerce domain,and then semantic frames were designed for those verbs.Based on the frames,sentences from SRSs were selected and labeled manually,and the labeled sentences were used as training examples in the machine learning stage.Besides the training examples labeled with semantic roles,external ontology knowledge was used to relieve the data sparsity problem and obtain reliable results.Based on the Sem Cor and Word Net corpus,the senses of nouns and verbs were identified in a sequential manner through the K-nearest neighbor approach.Then the senses of the verbs were used to identify the frame types.After that,we trained the SRL labeling classifier with the maximum entropy method,in which we added some new features based on word sense,such as the hypernyms and hyponyms of the word senses in the ontology.Experimental results show that this new approach for automatic functional requirements analysis is effective. 展开更多
关键词 software requirement engineering semantic role labelling machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部