In this paper, we get the N-fold Darboux transformation with multi-parameters for the coupled mKdV equations with the help of a guage transformation of the spectral problem. As an application, some new multi-soliton s...In this paper, we get the N-fold Darboux transformation with multi-parameters for the coupled mKdV equations with the help of a guage transformation of the spectral problem. As an application, some new multi-soliton solutions and complexiton solutions are obtained from choosing the appropriate seed solution. All obtained solutions and N-fold Darboux transformations are expressed using the Vandermonde-like determinants.展开更多
In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensa...In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.展开更多
This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that...This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.展开更多
In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 rep...In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 represents a trapping potential,and f has an exponential critical growth.Under the appropriate assumptions of f,we have obtained the existence of normalized solutions to the above Schr?dinger equation by introducing a variational method.And these solutions are also high energy solutions with positive energy.展开更多
In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved ...In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.展开更多
Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equatio...Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.展开更多
In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact soluti...In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use ...In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use the Z1transformation to get the general solutions of some nonlinear partial differential equations for the first time, and use the general solutions to obtain the exact solutions of some typical definite solution problems.展开更多
In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting device...In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton ...In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
Background:Zoonotic diseases originating in animals pose a significant threat to global public health.Recent outbreaks,such as coronavirus disease 2019(COVID-19),have caused widespread illness,death,and socioeconomic ...Background:Zoonotic diseases originating in animals pose a significant threat to global public health.Recent outbreaks,such as coronavirus disease 2019(COVID-19),have caused widespread illness,death,and socioeconomic disruptions worldwide.To cope with these diseases effectively,it is crucial to strengthen surveillance capabilities and establish rapid response systems.Aim:The aim of this review is to examine the modern technologies and solutions that have the potential to enhance zoonotic disease surveillance and outbreak responses and provide valuable insights into how cuttingedge innovations could be leveraged to prevent,detect,and control emerging zoonotic disease outbreaks.Herein,we discuss advanced tools including big data analytics,artificial intelligence,the Internet of Things,geographic information systems,remote sensing,molecular diagnostics,point-of-care testing,telemedicine,digital contact tracing,and early warning systems.Results:These technologies enable real-time monitoring,the prediction of outbreak risks,early anomaly detection,rapid diagnosis,and targeted interventions during outbreaks.When integrated through collaborative partnerships,these strategies can significantly improve the speed and effectiveness of zoonotic disease control.However,several challenges persist,particularly in resource-limited settings,such as infrastructure limitations,costs,data integration and training requirements,and ethical implementation.Conclusion:With strategic planning and coordinated efforts,modern technologies and solutions offer immense potential to bolster surveillance and outbreak responses,and serve as a critical resource against emerging zoonotic disease threats worldwide.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The prop...In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The properties on the radial distribution,the limit direction of the Julia set and the existence of a Baker wandering domain of the entire solutions are also discussed.展开更多
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ...On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
文摘In this paper, we get the N-fold Darboux transformation with multi-parameters for the coupled mKdV equations with the help of a guage transformation of the spectral problem. As an application, some new multi-soliton solutions and complexiton solutions are obtained from choosing the appropriate seed solution. All obtained solutions and N-fold Darboux transformations are expressed using the Vandermonde-like determinants.
文摘In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.
文摘This work focuses on a Keller-Segel chemotaxis model, with an emphasis on its conservation laws. Through a new approach combined with the multiplier method, called the mixed method, we obtain conservation vectors that are related and unrelated to symmetric information. In addition, some exact solutions with particular forms are obtained according to the method of conservation laws. These particular solutions are different from the group-invariant solutions.
基金Supported by National Natural Science Foundation of China(Grant Nos.11671403 and 11671236)Henan Provincial General Natural Science Foundation Project(Grant No.232300420113)。
文摘In this paper,we study high energy normalized solutions for the following Schr?dinger equation{-Δu+V(x)u+λu=f(u),in R^(2),∫_(R^(2))|u|^(2)dx=c,where c>0,λ∈R will appear as a Lagrange multiplier,V(x)=ω|x|2 represents a trapping potential,and f has an exponential critical growth.Under the appropriate assumptions of f,we have obtained the existence of normalized solutions to the above Schr?dinger equation by introducing a variational method.And these solutions are also high energy solutions with positive energy.
文摘In this article,several kinds of novel exact waves solutions of three well-known different space-time fractional nonlinear coupled waves dynamical models are constructed with the aid of simpler and effective improved auxiliary equation method.Firstly we will investigate space-time fractional coupled Boussinesq-Burger dynamical model,which is used to model the propagation of water waves in shallow sea and harbor,and has many applications in ocean engineering.Secondly,we will investigate the space-time fractional coupled Drinfeld-SokolovWilson equation which is used to characterize the nonlinear surface gravity waves propagation over horizontal seabed.Thirdly,we will investigate the space-time-space fractional coupled Whitham-Broer-Kaup equation which is used to model the shallow water waves in a porous medium near a dam.We obtained different solutions in terms of trigonometric,hyperbolic,exponential and Jacobi elliptic functions.Furthermore,graphics are plotted to explain the different novel structures of obtained solutions such as multi solitons interaction,periodic soliton,bright and dark solitons,Kink and anti-Kink solitons,breather-type waves and so on,which have applications in ocean engineering,fluid mechanics and other related fields.We hope that our results obtained in this article will be useful to understand many novel physical phenomena in applied sciences and other related fields.
文摘Lie symmetry analysis is applied to a(3+1)-dimensional combined potential Kadomtsev-Petviashvili equation with B-type Kadomtsev-Petviashvili equation(pKP-BKP equation)and the corresponding similarity reduction equations are obtained with the different infinitesimal generators.Invariant solutions with arbitrary functions and constants for the(3+1)-dimensional pKP-BKP equation,including the lump solution,the periodic-lump solution,the two-kink solution,the breather solution and the lump-two-kink solution,have been studied analytically and graphically.
文摘In this study,we investigate a variety of exact soliton solutions of general(2+1)-dimensional Bogoyavlensky–Konopelchenko equation via the exp(-Φ(η))-expansion method and modified Kudryashov method.The exact solutions are characterized in the form of hyperbolic,trigonometric and rational function solutions using exp(-Φ(η))-expansion method,whereas the solution in the form of hyperbolic function expression is obtained by the modified Kudryashov method.These exact solutions also include kink,bright,dark,singular and periodic soliton solutions.The graphical interpretation of the exact solutions is addressed for specific choices of the parameters appearing in the solutions.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
文摘In previous papers, we proposed the important Ztransformations and obtained general solutions to a large number of linear and quasi-linear partial differential equations for the first time. In this paper, we will use the Z1transformation to get the general solutions of some nonlinear partial differential equations for the first time, and use the general solutions to obtain the exact solutions of some typical definite solution problems.
基金Project supported by the Science and Technology Plan Joint Program of Liaoning Province of China(Natural Science Foundation-Doctoral Research Launch Project)(No.2024-BSLH-027)the Fundamental Research Funds for Undergraduate Universities of Liaoning Province of China(No.LJBKY2024033)+1 种基金the National Natural Science Foundation of China(No.12472064)the Natural Science Foundation of Liaoning Province of China(No.2023-MS-118)。
文摘In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
文摘In this paper, the evolutionary behavior of N-solitons for a (2 + 1)-dimensional Konopelchenko-Dubrovsky equations is studied by using the Hirota bilinear method and the long wave limit method. Based on the N-soliton solution, we first study the evolution from N-soliton to T-order (T=1,2) breather wave solutions via the paired-complexification of parameters, and then we get the N-order rational solutions, M-order (M=1,2) lump solutions, and the hybrid behavior between a variety of different types of solitons combined with the parameter limit technique and the paired-complexification of parameters. Meanwhile, we also provide a large number of three-dimensional figures in order to better show the degeneration of the N-soliton and the interaction behavior between different N-solitons.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
文摘Background:Zoonotic diseases originating in animals pose a significant threat to global public health.Recent outbreaks,such as coronavirus disease 2019(COVID-19),have caused widespread illness,death,and socioeconomic disruptions worldwide.To cope with these diseases effectively,it is crucial to strengthen surveillance capabilities and establish rapid response systems.Aim:The aim of this review is to examine the modern technologies and solutions that have the potential to enhance zoonotic disease surveillance and outbreak responses and provide valuable insights into how cuttingedge innovations could be leveraged to prevent,detect,and control emerging zoonotic disease outbreaks.Herein,we discuss advanced tools including big data analytics,artificial intelligence,the Internet of Things,geographic information systems,remote sensing,molecular diagnostics,point-of-care testing,telemedicine,digital contact tracing,and early warning systems.Results:These technologies enable real-time monitoring,the prediction of outbreak risks,early anomaly detection,rapid diagnosis,and targeted interventions during outbreaks.When integrated through collaborative partnerships,these strategies can significantly improve the speed and effectiveness of zoonotic disease control.However,several challenges persist,particularly in resource-limited settings,such as infrastructure limitations,costs,data integration and training requirements,and ethical implementation.Conclusion:With strategic planning and coordinated efforts,modern technologies and solutions offer immense potential to bolster surveillance and outbreak responses,and serve as a critical resource against emerging zoonotic disease threats worldwide.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
基金supported partly by the National Natural Science Foundation of China(11926201,12171050)the National Science Foundation of Guangdong Province(2018A030313508)。
文摘In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The properties on the radial distribution,the limit direction of the Julia set and the existence of a Baker wandering domain of the entire solutions are also discussed.
基金Supported by the National Natural Science Foundation of China(12261023,11861023)the Foundation of Science and Technology project of Guizhou Province of China([2018]5769-05)。
文摘On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.