期刊文献+
共找到29,464篇文章
< 1 2 250 >
每页显示 20 50 100
Nanograting‑Based Dynamic Structural Colors Using Heterogeneous Materials
1
作者 Jingang Wang Haibo Yu +6 位作者 Jianchen Zheng Yuzhao Zhang Hongji Guo Ye Qiu Xiaoduo Wang Yongliang Yang Lianqing Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期138-151,共14页
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov... Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips. 展开更多
关键词 Dynamic structural colors Four-dimensional printing PH-RESPONSIVE Nanogrid Heterogeneous materials
在线阅读 下载PDF
Role of iron ore in enhancing gasification of iron coke:Structural evolution,influence mechanism and kinetic analysis
2
作者 Jie Wang Wei Wang +4 位作者 Xuheng Chen Junfang Bao Qiuyue Hao Heng Zheng Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期58-69,共12页
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro... The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%. 展开更多
关键词 low-carbon ironmaking iron coke GASIFICATION structural evolution kinetic model
在线阅读 下载PDF
Ultra‑High Sensitivity Anisotropic Piezoelectric Sensors for Structural Health Monitoring and Robotic Perception
3
作者 Hao Yin Yanting Li +4 位作者 Zhiying Tian Qichao Li Chenhui Jiang Enfu Liang Yiping Guo 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期432-446,共15页
Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor strugg... Monitoring minuscule mechanical signals,both in magnitude and direction,is imperative in many application scenarios,e.g.,structural health monitoring and robotic sensing systems.However,the piezoelectric sensor struggles to satisfy the requirements for directional recognition due to the limited piezoelectric coefficient matrix,and achieving sensitivity for detecting micrometer-scale deformations is also challenging.Herein,we develop a vector sensor composed of lead zirconate titanate-electronic grade glass fiber composite filaments with oriented arrangement,capable of detecting minute anisotropic deformations.The as-prepared vector sensor can identify the deformation directions even when subjected to an unprecedented nominal strain of 0.06%,thereby enabling its utility in accurately discerning the 5μm-height wrinkles in thin films and in monitoring human pulse waves.The ultra-high sensitivity is attributed to the formation of porous ferroelectret and the efficient load transfer efficiency of continuous lead zirconate titanate phase.Additionally,when integrated with machine learning techniques,the sensor’s capability to recognize multi-signals enables it to differentiate between 10 types of fine textures with 100%accuracy.The structural design in piezoelectric devices enables a more comprehensive perception of mechanical stimuli,offering a novel perspective for enhancing recognition accuracy. 展开更多
关键词 Flexible piezoelectric filaments ANISOTROPIC Ultra-high sensitivity structural health detection Texture recognition
在线阅读 下载PDF
Contribution of mechanical forces to structural synaptic plasticity:insights from 3D cellular motility mechanisms
4
作者 Rita O.Teodoro Mafalda Ribeiro Ramos Lara Carvalho 《Neural Regeneration Research》 SCIE CAS 2025年第7期1995-1996,共2页
Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi... Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024). 展开更多
关键词 PLASTICITY structural MECHANISMS
在线阅读 下载PDF
From single to combinatorial therapies in spinal cord injuries for structural and functional restoration
5
作者 Ernesto Doncel-Pérez Gabriel Guízar-Sahagún Israel Grijalva-Otero 《Neural Regeneration Research》 SCIE CAS 2025年第3期660-670,共11页
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso... Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord. 展开更多
关键词 neural regeneration NEUROPROTECTION spinal cord injury repair spinal cord injury treatments structural restoration of spinal cord injury
在线阅读 下载PDF
Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review
6
作者 Chao Zhang Shang-Xi Lai Hua-Ping Wang 《Structural Durability & Health Monitoring》 EI 2025年第1期25-54,共30页
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi... Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems. 展开更多
关键词 structural health monitoring data information modal parameters damage identification AI method
在线阅读 下载PDF
Structural Color Dynamic Graphics Display Based on Microlens Array
7
作者 LI Xue-han LIU Ling-zhi +1 位作者 HUANG Min LI Xiu 《印刷与数字媒体技术研究》 北大核心 2025年第2期162-168,共7页
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be... It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display. 展开更多
关键词 structural color Microlens array Dynamic graphics display Moirémagnification Optical anti-counterfeiting
在线阅读 下载PDF
Review of Vibration Analysis and Structural Optimization Research for Rotating Blades
8
作者 Saifeng Zhong Guoyong Jin +2 位作者 Yukun Chen Tiangui Ye Tuo Zhou 《哈尔滨工程大学学报(英文版)》 2025年第1期120-136,共17页
Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or hig... Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or high temperatures.These demanding working conditions considerably influence the dynamic performance of blades.Therefore,because of the challenges posed by blades in complex working environments,in-depth research and optimization are necessary to ensure that blades can operate safely and efficiently,thus guaranteeing the reliability and performance of mechanical systems.Focusing on the vibration analysis of blades in rotating machinery,this paper conducts a comprehensive literature review on the research advancements in vibration modeling and structural optimization of blades under complex operational conditions.First,the paper outlines the development of several modeling theories for rotating blades,including one-dimensional beam theory,two-dimensional plate-shell theory,and three-dimensional solid theory.Second,the research progress in the vibrational analysis of blades under aerodynamic loads,thermal environments,and crack factors is separately discussed.Finally,the developments in rotating blade structural optimization are presented from material optimization and shape optimization perspectives.The methodology and theory of analyzing and optimizing blade vibration characteristics under multifactorial operating conditions are comprehensively outlined,aiming to assist future researchers in proposing more effective and practical approaches for the vibration analysis and optimization of blades. 展开更多
关键词 Rotating blade Vibration characteristics structural optimization Harsh operating conditions REVIEW
在线阅读 下载PDF
Genomic insights into demographic history,structural variation landscape,and complex traits from 514 Hu sheep genomes
9
作者 Kaiyu Chen Yuelang Zhang +6 位作者 Yizhe Pan Xin Xiang Chen Peng Jiayi He Guiqing Huang Zhengguang Wang Pengju Zhao 《Journal of Genetics and Genomics》 2025年第2期245-257,共13页
Hu sheep is an indigenous breed from the Taihu Lake Plain in China,known for its high fertility.Although Hu sheep belong to the Mongolian group,their demographic history and genetic architecture remain inconclusive.He... Hu sheep is an indigenous breed from the Taihu Lake Plain in China,known for its high fertility.Although Hu sheep belong to the Mongolian group,their demographic history and genetic architecture remain inconclusive.Here,we analyze 697 sheep genomes from representatives of Mongolian sheep breeds.Our study suggests that the ancestral Hu sheep first separated from the Mongolian group approximately 3000 years ago.As Hu sheep migrated from the north and flourished in the Taihu Lake Plain around 1000 years ago,they developed a unique genetic foundation and phenotypic characteristics,which are evident in the genomic footprints of selective sweeps and structural variation landscape.Genes associated with reproductive traits(BMPR1B and TDRD10)and horn phenotype(RXFP2)exhibit notable selective sweeps in the genome of Hu sheep.A genome-wide association analysis reveals that structural variations at LOC101110773,MAST2,and ZNF385B may significantly impact polledness,teat number,and early growth in Hu sheep,respectively.Our study offers insights into the evolutionary history of Hu sheep and may serve as a valuable genetic resource to enhance the understanding of complex traits in Hu sheep. 展开更多
关键词 Hu sheep Population sequencing Demographic history structural variation Genome-wide association study
原文传递
Transposable elements shape the landscape of heterozygous structural variation in a bird genome
10
作者 Bo-Ping Li Na Kang +7 位作者 Zao-Xu Xu Hao-Ran Luo Shi-Yu Fan Xiao-Han Ao Xing Li Ya-Peng Han Xiao-Bin Ou Luo-Hao Xu 《Zoological Research》 2025年第1期75-86,共12页
Avian genomes exhibit compact organization and remarkable chromosomal stability.However,the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorl... Avian genomes exhibit compact organization and remarkable chromosomal stability.However,the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored.This study generated a diploid genome assembly for the golden pheasant(Chrysolophus pictus),a species distinguished by the vibrant plumage of males.Each haploid genome assembly included complete chromosomalmodels,incorporatingall microchromosomes.Analysis revealed extensive tandem amplification of immune-related genes across the smallest microchromosomes(dot chromosomes),with an average copy number of 54.Structural variation between the haploid genomes was primarily shaped by large insertions and deletions(indels),with minimal contributions from inversions or duplications.Approximately 28%of these large indels were associated with recent insertions of transposable elements,despite their typically low activity in bird genomes.Evidence for significant effects of transposable elements on gene expression was minimal.Evolutionary strata on the sex chromosomes were identified,along with a drastic rearrangement of the W chromosome.These analyses of the high-quality diploid genome of the golden pheasant provide valuable insights into the evolutionary patterns of structural variation in avian genomes. 展开更多
关键词 Golden pheasant structural variation Transposable elements Chromosome evolution
在线阅读 下载PDF
Structural designs and mechanism insights into electrocatalytic oxidation of 5-hydroxymethylfurfural
11
作者 Jing Lei Huijie Zhang +4 位作者 Jian Yang Jia Ran Jiqiang Ning Haiyan Wang Yong Hu 《Journal of Energy Chemistry》 2025年第1期792-814,共23页
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ... Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA. 展开更多
关键词 Electrochemical oxidation of 5- HYDROXYMETHYLFURFURAL 2 5-Furan dicarboxylic acid structural design MECHANISM ELECTROCATALYSTS
在线阅读 下载PDF
Structural characterization of blueberry fruit polysaccharides and assessment of its hypolipidemic and immunological activity
12
作者 Chuyan Wang Yuqi Qin +4 位作者 Xiaoao Cui Dongsheng Wang Yexian Hu Liuqing Yang Wei Lan 《Food Science and Human Wellness》 2025年第4期1360-1368,共9页
In this study,polysaccharides were extracted from blueberry fruit(BFP)and isolated to 3 components(BFP-1,BFP-2 and BFP-3).The molecular weight,monosaccharide composition,characteristic groups,microscopic morphology,an... In this study,polysaccharides were extracted from blueberry fruit(BFP)and isolated to 3 components(BFP-1,BFP-2 and BFP-3).The molecular weight,monosaccharide composition,characteristic groups,microscopic morphology,and triple helical conformation of the polysaccharides were characterized using high performance permeation chromatography,high performance liquid chromatography,gas chromatographymass spectrometry,Fourier transform infrared spectrometer,scanning electron microscope and Congo red staining.Moreover,the hypolipidemic and immunological activities of the polysaccharides were also assessed.Results showed that the molecular weights of polysaccharides BFP-1,BFP-2,and BFP-3 were 5.547×10^(4),5.671×10^(4),and 3.951×10^(4)Da,respectively,the main monosaccharides were glucose(Glc),galactose(Gal)and arabinose(Ara),but BFP-3 was mainly composed of galacturonic acid(Gal A),Glc,Gal,and Ara.The backbone of BFP-1 was→4)-Glcp-(1→,which branches to Ara and xylose(Xyl)residues,while the backbone of BFP-2 was→5)-Araf-(1→,which branches to Xyl,Glc,rhamnose(Rha)and Gal residues,in particularly,BFP-3 has a more complex branching with a→3,6)-Galp-(1→)backbone,the side chain is dominated by Araf-(1→).Blueberry polysaccharides are pyran-type polysaccharides withα-glycosidic bonds,and BFP-1 has a typical triple-helical structure.The activity assay revealed that the binding of BFP-3 to sodium glycylcholate hydrate and sodium taurocholate was 79.95%and 78.50%,respectively,indicating that it had better hypolipidemic activity than the others.Immunoactivity assay showed that BFP promoted NO secretion through activating the NF-κB signalling pathway in RAW264.7 cells,which played a role in enhancing the immune function of the organism.These findings may provide a reference for the development and application of blueberry polysaccharides in functional food and medicine. 展开更多
关键词 Blueberry fruit polysaccharides structural characterization HYPOLIPIDEMIC Immunological activity
在线阅读 下载PDF
Structural design and controllable preparation of SiC NWs@Fe_(3)O_(4)@NC nanocomposites for electromagnetic wave absorption
13
作者 Wenxin Zhao Meng Zhang +10 位作者 Yukun Miao Chang Wang Anguo Cui Liying Yuan Zeqing Miao Xiaoqing Wang Zhibo Wang Haoyu Pang Alan Meng Zhenjiang Li Ting Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期520-533,共14页
Using SiC nanowires(SiCNWs)as the substrate,reflux-annealing and electrodeposition-carbonization were sequentially applied to integrate SiC nanowires with magnetic Fe_(3)O_(4) nanoparticles and amorphous nitrogen-dope... Using SiC nanowires(SiCNWs)as the substrate,reflux-annealing and electrodeposition-carbonization were sequentially applied to integrate SiC nanowires with magnetic Fe_(3)O_(4) nanoparticles and amorphous nitrogen-doped carbon(NC)for the fabrication of SiCNWs@Fe_(3)O_(4)@NC nanocomposite.Comprehensive testing and characterization of this product provided valuable insights into the im-pact of structural and composition changes on its electromagnetic wave absorption performances.The optimized SiCNWs@Fe_(3)O_(4)@NC nanocomposite,which has 30wt%filler content and a corresponding thickness of 2.03 mm,demonstrates exceptional performance with the minimum reflection loss(RL_(min))of-53.69 dB at 11.04 GHz and effective absorption bandwidth(EAB)of 4.4 GHz.The synergistic effects of the enhanced nanocomposite on electromagnetic wave absorption were thoroughly elucidated using the theories of multiple scattering,polarization relaxation,hysteresis loss,and eddy current loss.Furthermore,a multicomponent electromagnetic wave attenu-ation model was established,providing valuable insight into the design of novel absorbing materials and the enhancement of their absorp-tion performances.This research demonstrated the significant potential of the SiCNWs@Fe_(3)O_(4)@NC nanocomposite as a highly efficient electromagnetic wave-absorbing material with potential applications in various fields,such as stealth technology and microwave absorption. 展开更多
关键词 electromagnetic attenuation mechanism multicomponent nanocomposite SiC nanowires structural design
在线阅读 下载PDF
Structural and transport properties of(Mg,Fe)SiO_(3) at high temperature and high pressure
14
作者 Shu Huang Zhiyang Xiang +5 位作者 Shi He Luhan Yin Shihe Zhang Chen Chen Kaihua He Cheng Lu 《Chinese Physics B》 2025年第3期123-129,共7页
(Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport propert... (Mg,Fe)SiO_(3) is primarily located in the mantle and has a substantial impact on geophysical and geochemical processes.Here,we employ molecular dynamics simulations to investigate the structural and transport properties of(Mg,Fe)SiO_(3) with varying iron contents at temperatures up to 5000 K and pressures up to 135 GPa.We thoroughly examine the effects of pressure,temperature,and iron content on the bond lengths,coordination numbers,viscosities,and electrical conductivities of(Mg,Fe)SiO_(3).Our calculations indicate that the increase of pressure leads to the shortening of the O-O and Mg-O bond lengths,while the Si-O bond lengths exhibit the initial increase with pressure up to 40 GPa,after which they are almost unchanged.The coordination numbers of Si transition from four-fold to six-fold and eventually reach eight-fold coordination at 135 GPa.The enhanced pressure causes the decrease of the diffusion coefficients and the increase of the viscosities of(Mg,Fe)SiO_(3).The increased temperatures slightly decrease the coordination numbers and viscosities,as well as obviously increase the diffusion coefficients and electrical conductivities of(Mg,Fe)SiO_(3).Additionally,iron doping facilitates the diffusion of Si and O,reduces the viscosities,and enhances the electrical conductivities of(Mg,Fe)SiO_(3).These findings advance fundamental understanding of the structural and transport properties of(Mg,Fe)SiO_(3) under high temperature and high pressure,which provide novel insights for unraveling the complexities of geological processes within the Earth's mantle. 展开更多
关键词 (Mg Fe)SiO_(3) structural and transport properties molecular dynamics simulations high temperature and high pressure
在线阅读 下载PDF
Canopy structural heterogeneity drives α and β species-genetic diversity correlations in a Chinese subtropical forest
15
作者 Zhiliang Yao Xia Pan +6 位作者 Xin Yang Xiaona Shao Bin Wang Yun Deng Zhiming Zhang Qiaoming Li Luxiang Lin 《Plant Diversity》 2025年第1期106-114,共9页
Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies ha... Patterns and drivers of species–genetic diversity correlations(SGDCs)have been broadly examined across taxa and ecosystems and greatly deepen our understanding of how biodiversity is maintained.However,few studies have examined the role of canopy structural heterogeneity,which is a defining feature of forests,in shaping SGDCs.Here,we determine what factors contribute toα-andβ-species–genetic diversity correlations(i.e.,α-andβ-SGDCs)in a Chinese subtropical forest.For this purpose,we used neutral molecular markers to assess genetic variation in almost all adult individuals of the dominant tree species,Lithocarpus xylocarpus,across plots in the Ailaoshan National Natural Reserve.We also quantified microhabitat variation by quantifying canopy structure heterogeneity with airborne laser scanning on 201-ha subtropical forest plots.We found that speciesα-diversity was negatively correlated with geneticα-diversity.Canopy structural heterogeneity was positively correlated with speciesα-diversity but negatively correlated with geneticα-diversity.These contrasting effects contributed to the formation of a negativeα-SGDC.Further,we found that canopy structural heterogeneity increases speciesα-diversity and decreases geneticα-diversity by reducing the population size of target species.Speciesβ-diversity,in contrast,was positively correlated with geneticβ-diversity.Differences in canopy structural heterogeneity between plots had non-linear parallel effects on the two levels ofβ-diversity,while geographic distance had a relatively weak effect onβ-SGDC.Our study indicates that canopy structural heterogeneity simultaneously affects plot-level community species diversity and population genetic diversity,and species and genetic turnover across plots,thus drivingα-andβ-SGDCs. 展开更多
关键词 Dominant species Forest structure LIDAR Lithocarpus xylocarpus Speciesegenetic diversity correlation Subtropical evergreen broad-leaved forest
在线阅读 下载PDF
Three-dimensional structural models,evolution and petroleum geological significances of transtensional faults in the Ziyang area,central Sichuan Basin,SW China
16
作者 TIAN Fanglei GUO Tonglou +6 位作者 HE Dengfa GU Zhanyu MENG Xianwu WANG Renfu WANG Ying ZHANG Weikang LU Guo 《Petroleum Exploration and Development》 SCIE 2024年第3期604-620,共17页
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,... With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration. 展开更多
关键词 transtensional(strike-slip)fault three-dimensional structural model structural evolution petroleum geological significance Ziyang area Sichuan Basin
在线阅读 下载PDF
A practical guideline for univariate meta-analytic structural equation modelling
17
作者 Zhen-Wei Dai Qiu-Chen Yuan 《Medical Data Mining》 2024年第4期28-33,共6页
Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analys... Background:Meta-analysis is a quantitative approach that systematically integrates results from previous research to draw conclusions.Structural equation modelling is a statistical method that integrates factor analysis and path analysis.Meta-analytic structural equation modeling(MASEM)combines meta-analysis and structural equation modeling.It allows researchers to explain relationships among a group of variables across multiple studies.Methods:We used a simulated dataset to conduct a univariate MASEM analysis,using Comprehensive Meta Analysis 3.3,Analysis of Moment Structures 24.0 software.Results:Despite the lack of concise literature on the methodology,our study provided a practical step-by-step guide on univariate MASEM.Conclusion:Researchers can employ MASEM analysis in applicable fields based on the description,principles,and practices expressed in this study and our previous publications mentioned in this study. 展开更多
关键词 META-ANALYSIS structural equation modelling meta-analytic structural equation modelling STATISTICS
在线阅读 下载PDF
Frequency Domain Fatigue Evaluation on SCR Girth-Weld Based on Structural Stress 被引量:2
18
作者 ZHANG Long ZHAO Tian-feng 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期255-270,共16页
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t... The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR. 展开更多
关键词 SCR girth weld random vibration self(cross)power spectrum structural stress method biaxial fatigue damage
在线阅读 下载PDF
Structural similarity of lithospheric velocity models of Chinese mainland 被引量:2
19
作者 Feng Huang Xueyang Bao +1 位作者 Qili Andy Dai Xinfu Li 《Earthquake Science》 2024年第6期514-528,共15页
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi... Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models. 展开更多
关键词 structural similarity LITHOSPHERE TOMOGRAPHY velocity model Chinese mainland
在线阅读 下载PDF
Associations of genome-wide structural variations with phenotypic differences in cross-bred Eurasian pigs 被引量:1
20
作者 Wencheng Zong Jinbu Wang +8 位作者 Runze Zhao Naiqi Niu Yanfang Su Ziping Hu Xin Liu Xinhua Hou Ligang Wang Lixian Wang Longchao Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期68-87,共20页
Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability ... Background During approximately 10,000 years of domestication and selection,a large number of structural variations(SVs)have emerged in the genome of pig breeds,profoundly influencing their phenotypes and the ability to adapt to the local environment.SVs(≥50 bp)are widely distributed in the genome,mainly in the form of insertion(INS),mobile element insertion(MEI),deletion(DEL),duplication(DUP),inversion(INV),and translocation(TRA).While studies have investigated the SVs in pig genomes,genome-wide association studies(GWAS)-based on SVs have been rarely conducted.Results Here,we obtained a high-quality SV map containing 123,151 SVs from 15 Large White and 15 Min pigs through integrating the power of several SV tools,with 53.95%of the SVs being reported for the first time.These high-quality SVs were used to recover the population genetic structure,confirming the accuracy of genotyping.Potential functional SV loci were then identified based on positional effects and breed stratification.Finally,GWAS were performed for 36 traits by genotyping the screened potential causal loci in the F2 population according to their corresponding genomic positions.We identified a large number of loci involved in 8 carcass traits and 6 skeletal traits on chromosome 7,with FKBP5 containing the most significant SV locus for almost all traits.In addition,we found several significant loci in intramuscular fat,abdominal circumference,heart weight,and liver weight,etc.Conclusions We constructed a high-quality SV map using high-coverage sequencing data and then analyzed them by performing GWAS for 25 carcass traits,7 skeletal traits,and 4 meat quality traits to determine that SVs may affect body size between European and Chinese pig breeds. 展开更多
关键词 Body size GWAS PIG SKELETON structural variations
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部