期刊文献+
共找到117篇文章
< 1 2 6 >
每页显示 20 50 100
基于T-S模糊神经网络组合模型的CPI预测 被引量:4
1
作者 荀新新 张德生 +1 位作者 王雁 杜方欣 《陕西科技大学学报(自然科学版)》 2014年第3期173-176,共4页
首先对我国CPI和PPI序列建立了VAR模型和加外生变量的半参数自回归模型,得到CPI的拟合值和预测值;然后在这两种单模型的基础上,结合模糊数学和神经网络知识,建立了T-S模糊神经网络组合预测模型;最后对三种模型进行比较.结果显示,T-S模... 首先对我国CPI和PPI序列建立了VAR模型和加外生变量的半参数自回归模型,得到CPI的拟合值和预测值;然后在这两种单模型的基础上,结合模糊数学和神经网络知识,建立了T-S模糊神经网络组合预测模型;最后对三种模型进行比较.结果显示,T-S模糊神经网络组合模型提高了预测结果的可靠性和准确性. 展开更多
关键词 VAR模型 加外生变量的半参数自回归模型 t-s模糊神经网络组合模型 隶属度函数
在线阅读 下载PDF
混沌机制在T-S模型模糊神经网络的系统辨识研究 被引量:16
2
作者 李翔 陈增强 袁著祉 《控制与决策》 EI CSCD 北大核心 2001年第4期504-506,共3页
出一种 T- S模型的模糊神经网络 ,在通常 BP算法的基础上 ,引进混沌机制来训练模糊神经网络的权值参数。将混沌 BP算法应用于非线性系统建模 ,以求获得全局意义下的最优逼近。仿真研究说明了其有效性和良好的性质。
关键词 混沌机制 模糊神经网络 t-s模型 系统辨识 模糊逻辑
在线阅读 下载PDF
基于T-S模糊神经网络的模型在台风灾情预测中的应用——以海南为例 被引量:15
3
作者 张广平 张晨晓 谢忠 《灾害学》 CSCD 北大核心 2013年第2期86-89,共4页
使用1992-2011年间海南省台风灾害数据,综合T-S模糊神经网络的模糊逻辑和神经网络学习优化的性能,设计了一种灾害损失预测模型并定量地表达了台风灾害损失致灾因子与灾情指标因子之间的规律。调节模型的参数cji、σji和pji(k),控制学习... 使用1992-2011年间海南省台风灾害数据,综合T-S模糊神经网络的模糊逻辑和神经网络学习优化的性能,设计了一种灾害损失预测模型并定量地表达了台风灾害损失致灾因子与灾情指标因子之间的规律。调节模型的参数cji、σji和pji(k),控制学习性能指标误差值Ep和总误差E来优化模型的性能。将模型应用于201108号台风"洛坦"灾害损失预测中,实验结果表明该模型具有较好的预测功能。 展开更多
关键词 台风灾害 预测模型 t-s模糊神经网络 海南
在线阅读 下载PDF
神经网络结构的递归T-S模糊模型 被引量:10
4
作者 李翔 陈增强 袁著祉 《系统工程学报》 CSCD 2001年第4期268-274,共7页
提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建... 提出一种新的递归 T- S模型 (Takagi- Sugeno模型 )的模糊神经网络结构 (TSFRNN ) ,利用动态 BP(DBP)算法来学习训练神经网络的参数 ,通过与通常的多层前馈神经网络结构的 T- S模糊神经网络(TSFNN)的对比仿真实验 ,说明在非线性系统建模方面 TSFRNN比 TSFNN更加优越 . 展开更多
关键词 递归神经网络 t-s模糊模型 非线性系统 建模 学习算法
在线阅读 下载PDF
用T-S模型模糊神经网络进行压裂效果预测 被引量:5
5
作者 刘洪 赵金洲 +2 位作者 胡永全 张绍伦 刘江雁 《断块油气田》 CAS 2002年第3期35-38,共4页
压裂效果受多种因素的影响,不同井况的不同参数对压裂效果的影响程度不一样,具有许多的模糊性。运用T—S模型模糊神经网络,建立各种影响因素与压裂效果之间的关系模型和预测模型,可以用来指导压裂选井选层和压裂施工工艺。实践证明,该... 压裂效果受多种因素的影响,不同井况的不同参数对压裂效果的影响程度不一样,具有许多的模糊性。运用T—S模型模糊神经网络,建立各种影响因素与压裂效果之间的关系模型和预测模型,可以用来指导压裂选井选层和压裂施工工艺。实践证明,该方法用于压裂效果预测具有良好的适应性和实用性。 展开更多
关键词 t-s模型 模糊神经网络 压裂效果 预测 油气藏 选井 选层
在线阅读 下载PDF
基于T-S模型的模糊神经网络PID控制 被引量:7
6
作者 姜映红 叶碧成 《控制工程》 CSCD 2006年第6期540-542,546,共4页
针对在非线性、时变不确定系统中,常规PID控制器难以获得满意效果的问题,仿照传统PID控制器结构,设计了一种基于T-S模型的模糊神经网络PID控制器。该控制器基于T-S模糊模型,将PID结构融入模糊控制中,充分发挥了模糊系统非线性、可解释... 针对在非线性、时变不确定系统中,常规PID控制器难以获得满意效果的问题,仿照传统PID控制器结构,设计了一种基于T-S模型的模糊神经网络PID控制器。该控制器基于T-S模糊模型,将PID结构融入模糊控制中,充分发挥了模糊系统非线性、可解释性的特点;然后又利用神经网络的学习算法,实现了对模糊控制器的参数调整,使控制器具有了适应时变、不确定系统的自学习和自组织能力。针对非线性、时变系统,将此控制器与传统PID控制器对比进行了仿真研究,并应用于啤酒发酵领域,其结果表明,该控制器取得了令人满意的效果。 展开更多
关键词 t-s模型 模糊 神经网络 PID
在线阅读 下载PDF
基于T-S模型的模糊神经网络在地下硐室超挖预测中的应用 被引量:2
7
作者 李启月 孔德国 +1 位作者 吴正宇 黄武林 《矿冶工程》 CSCD 北大核心 2017年第1期1-4,共4页
以山东某隧道为例,运用基于T-S模型的模糊神经网络,结合相关影响因素对地下硐室超挖进行了预测。预测模型根据工程实际情况选用了199组数据,其中179组数据作为训练样本训练网络,20组数据作为测试样本验证模型的预测结果。通过计算,基于... 以山东某隧道为例,运用基于T-S模型的模糊神经网络,结合相关影响因素对地下硐室超挖进行了预测。预测模型根据工程实际情况选用了199组数据,其中179组数据作为训练样本训练网络,20组数据作为测试样本验证模型的预测结果。通过计算,基于T-S模型模糊神经网络超挖预测的相关系数为0.962 8,均方差为0.449,平均相对误差为6.33%。与BP神经网络和回归模型的预测结果进行了比较分析,结果表明基于T-S模型的模糊神经网络预测效果最好,能精确预测地下硐室爆破超挖量,对控制超挖量具有重要意义。 展开更多
关键词 地下硐室 超挖 预测 t-s模型 模糊神经网络
在线阅读 下载PDF
基于T-S模糊模型的神经网络的系统辨识 被引量:10
8
作者 蔡卫菊 张颖超 《微计算机信息》 北大核心 2006年第01Z期176-178,共3页
基于T-S模糊模型,提出了利用神经网络实现非线性系统的辨识。首先,利用一种无监督的聚类算法分析输入输出数据生成初始的结构模型,确定系统的模糊空间和模糊规则数,构造神经网络辨识模型前提参数,使前提参数自适应变化,有较好的自学习... 基于T-S模糊模型,提出了利用神经网络实现非线性系统的辨识。首先,利用一种无监督的聚类算法分析输入输出数据生成初始的结构模型,确定系统的模糊空间和模糊规则数,构造神经网络辨识模型前提参数,使前提参数自适应变化,有较好的自学习能力和优化能力,采用最小二乘法取得结论参数。仿真结果验证了该方法是有效和可行的。 展开更多
关键词 t-s模糊模型 神经网络 结构辨识 参数辨识
在线阅读 下载PDF
T-S模型的模糊神经网络控制器及应用研究 被引量:5
9
作者 程启明 《电路与系统学报》 CSCD 1999年第1期74-78,共5页
本文介绍了T-S模型的模糊神经网络,讨论了这种网络的结构、学习算法,给出了由这种网络组成的控制器结构。仿真结果表明此控制器对船舶操纵等非线性系统具有很好的控制性能和鲁棒性。
关键词 t-s模型 神经网络 模糊神经网络 船舶损纵
在线阅读 下载PDF
基于T-S模糊神经网络模型的钦州市主要河流水质评价 被引量:4
10
作者 莫崇勋 阮俞理 +2 位作者 莫桂燕 朱新荣 孙桂凯 《人民珠江》 2017年第8期80-83,共4页
为客观评价河流水质,基于钦州市6条主要河流水质监测数据,将T-S模糊神经网络模型用于钦州市主要河流水质评价。结果表明:通过训练的T-S模糊神经网络模型具有很强的泛化能力,训练样本最大误差绝对值小于0.05;检验样本最大误差绝对值仅为0... 为客观评价河流水质,基于钦州市6条主要河流水质监测数据,将T-S模糊神经网络模型用于钦州市主要河流水质评价。结果表明:通过训练的T-S模糊神经网络模型具有很强的泛化能力,训练样本最大误差绝对值小于0.05;检验样本最大误差绝对值仅为0.092 4,能满足水质综合评价要求;钦州市内主要河流水质相对较好,处于Ⅱ~Ⅲ类,其中大风江、张黄江水质较好,马江较差。 展开更多
关键词 t-s模型 模糊神经网络 水质评价 河流水质 钦州市
在线阅读 下载PDF
基于T-S模型的模糊神经网络光伏MPPT控制 被引量:3
11
作者 赵剑飞 卢航宇 丁朋飞 《电机与控制应用》 2018年第11期116-120,共5页
为了克服传统最大功率点跟踪(MPPT)方法的一些缺点,使光伏系统更加快速准确地工作在最大功率输出点,提出了基于模糊控制和神经网络控制相结合的自适应控制方法。该方法充分利用模糊神经网络处理非线性问题的优点,通过模糊控制来改变步长... 为了克服传统最大功率点跟踪(MPPT)方法的一些缺点,使光伏系统更加快速准确地工作在最大功率输出点,提出了基于模糊控制和神经网络控制相结合的自适应控制方法。该方法充分利用模糊神经网络处理非线性问题的优点,通过模糊控制来改变步长,利用神经网络的自学习能力来快速达到平衡,使光伏MPPT在跟踪速度和稳定性之间达到一个较优的平衡。仿真和试验结果表明,基于模糊神经网络自适应控制的MPPT方法具有较强的鲁棒性和自适应能力。 展开更多
关键词 t-s模型 模糊神经网络 最大功率点跟踪
在线阅读 下载PDF
基于T-S模糊神经网络模型的汉中段汉江流域水质评价与分析 被引量:2
12
作者 拓守恒 何红 李鹏飞 《计算机时代》 2013年第8期46-48,51,共4页
为了有效对汉中段汉江流域水质进行监控和评价,采用一种智能T-S模糊神经网络模型进行水质综合评价。利用建立的T-S模糊神经网络模型对水质评价标准进行训练;利用训练好的神经网络模型,选取汉江流域汉中段18个监测点的7项评价指标的监测... 为了有效对汉中段汉江流域水质进行监控和评价,采用一种智能T-S模糊神经网络模型进行水质综合评价。利用建立的T-S模糊神经网络模型对水质评价标准进行训练;利用训练好的神经网络模型,选取汉江流域汉中段18个监测点的7项评价指标的监测数据,对该段水质进行综合评价。结果显示,汉水流域汉中段水质相对较好,除濂水河濂水桥监测站外,其余站点均属于Ⅰ类或Ⅱ类水质。通过计算机实验发现,该模型具有避免人工干预、提高水质评价精确度的优势。 展开更多
关键词 汉江流域 水质评价 模糊神经网络 t-s模型
在线阅读 下载PDF
递归T-S模糊模型的神经网络
13
作者 宋春宁 刘少东 《化工自动化及仪表》 CAS 2013年第5期578-581,共4页
在常规T-S模糊神经网络的基础上加入动态递归元件,提出了递归T-S模糊模型的神经网络。在系统辨识中采用无监督聚类算法和动态反向传播算法训练该递归神经网络的参数,给出了该递归网络的逼近性证明。辨识效果与常规T-S模糊模型作比较,说... 在常规T-S模糊神经网络的基础上加入动态递归元件,提出了递归T-S模糊模型的神经网络。在系统辨识中采用无监督聚类算法和动态反向传播算法训练该递归神经网络的参数,给出了该递归网络的逼近性证明。辨识效果与常规T-S模糊模型作比较,说明递归T-S模糊模型的神经网络在非线性系统辨识中表现出更好的性能。 展开更多
关键词 递归神经网络 t-s模糊模型 非线性系统辨识建摸 模糊基函数 无监督聚类算法 动态BP算法
在线阅读 下载PDF
基于T-S模糊神经网络的Hammerstein模型预测控制 被引量:3
14
作者 高文帅 郎宪明 《当代化工》 CAS 2020年第9期1949-1953,2019,共6页
针对化工生产过程中强非线性、大滞后、时变特点的复杂特性,提出了一种基于T-S模糊神经网络的Hammerstein模型动态矩阵预测控制方法。采用非线性控制分离策略,应用动态矩阵控制算法计算该模型动态线性部分的中间变量,作为T-S模糊神经网... 针对化工生产过程中强非线性、大滞后、时变特点的复杂特性,提出了一种基于T-S模糊神经网络的Hammerstein模型动态矩阵预测控制方法。采用非线性控制分离策略,应用动态矩阵控制算法计算该模型动态线性部分的中间变量,作为T-S模糊神经网络的输入,进而通过T-S模糊神经网络逆映射出控制量,以实现基于T-S模糊神经网络的Hammerstein模型预测控制。pH中和过程的仿真控制实验表明,所提方法明显优于传统的PID控制方法,具有良好的设定值跟踪及抗干扰效果。 展开更多
关键词 t-s模糊神经网络 HAMMERSTEIN模型 非线性 动态矩阵控制
在线阅读 下载PDF
水下机器人T-S型模糊神经网络控制 被引量:18
15
作者 梁霄 张均东 +3 位作者 李巍 郭冰洁 万磊 徐玉如 《电机与控制学报》 EI CSCD 北大核心 2010年第7期99-104,共6页
针对水下机器人模糊神经网络控制器运算量大和对强外界扰动的鲁棒性差及存在滞后性的问题,提出基于混合学习算法的水下机器人T-S型模糊神经网络控制方法。采用免疫遗传算法离线优化和神经网络自学习在线调整隶属函数的参数,从而减少神... 针对水下机器人模糊神经网络控制器运算量大和对强外界扰动的鲁棒性差及存在滞后性的问题,提出基于混合学习算法的水下机器人T-S型模糊神经网络控制方法。采用免疫遗传算法离线优化和神经网络自学习在线调整隶属函数的参数,从而减少神经网络的运算量,增强水下机器人对环境变化的反应能力。采用T-S模型,由后件网络动态调整模糊规则,提高控制系统的适应性。通过某微小型水下机器人的仿真和外场实验验证方法的可行性和优越性。实验结果表明,控制器对外界扰动具有较强的鲁棒性,保证即使在恶劣情况下,控制性能仍保持在较高水平。 展开更多
关键词 水下机器人 模糊神经网络控制 免疫遗传算法 混合学习算法 t-s模型
在线阅读 下载PDF
基于T-S模糊神经网络的采空塌陷危险性判别 被引量:11
16
作者 张连杰 武雄 +1 位作者 谢永 吴晨亮 《现代地质》 CAS CSCD 北大核心 2015年第2期461-465,共5页
采空区地面塌陷的危险性判别受地质因素、采矿因素等多重因素的影响,各因素往往影响程度不同且部分因素之间又相互联系。为了能够较准确地对采空塌陷危险性进行评估,引入了T-S模糊神经网络模型。以北京西山地区采空塌陷为例,根据塌陷特... 采空区地面塌陷的危险性判别受地质因素、采矿因素等多重因素的影响,各因素往往影响程度不同且部分因素之间又相互联系。为了能够较准确地对采空塌陷危险性进行评估,引入了T-S模糊神经网络模型。以北京西山地区采空塌陷为例,根据塌陷特点,分别选取了地质构造复杂程度、覆盖层类型、第四系覆盖层厚度、覆岩强度、煤层倾角、采深采厚比、采空区埋深、采空区空间叠置层数8项影响因素作为评价指标,并建立了分级标准。将单因素评价指标均匀线性插值作为训练样本,建立了T-S模糊神经网络判别模型。利用训练好的神经网络模型对选取的8处采空区进行评估,结果分别为:Ⅰ、Ⅱ、Ⅲ、Ⅱ、Ⅲ、Ⅱ、Ⅲ、Ⅱ,结果与实际情况吻合。研究表明,利用T-S模糊神经网络研究采空塌陷危险性是可行的。 展开更多
关键词 采空区 地面塌陷 评价 t-s模糊神经网络模型
在线阅读 下载PDF
木材干燥过程温湿度的T-S型模糊神经网络控制器设计 被引量:8
17
作者 姜滨 孙丽萍 曹军 《电机与控制学报》 EI CSCD 北大核心 2016年第10期114-120,共7页
木材干燥过程是一个强耦合、大滞后的非线性动力系统,很难准确建立被控对象的数学模型。为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,将智能控制引入木材干燥控制系统是必然的发展趋势。结合模糊控制和神经网络优点,设计了... 木材干燥过程是一个强耦合、大滞后的非线性动力系统,很难准确建立被控对象的数学模型。为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,将智能控制引入木材干燥控制系统是必然的发展趋势。结合模糊控制和神经网络优点,设计了一种木材干燥窑内温湿度的Takagi-Sugeno(T-S)型模糊神经网络控制器。该控制器无需对象的精确数学模型,适应性强,利用模糊算法解除木材干燥窑内温度和湿度间的强耦合关系,采用神经网络的自学习和自适应能力来实现整个非线性过程的模糊逻辑推理。仿真和实验结果表明,T-S型模糊神经网络控制器有效解决了木材干燥过程的温湿度控制,控制器响应速度快、超调小、鲁棒性强、控制精确度高,可以满足木材干燥控制系统要求。 展开更多
关键词 木材干燥过程 t-s模型 模糊神经网络控制器 温湿度控制 神经网络
在线阅读 下载PDF
基于T-S模型的神经网络在小陇山森林健康评价中的应用 被引量:3
18
作者 巨天珍 孟凡涛 +4 位作者 姚晶晶 王彦 任海峰 王蒙 张宋智 《广东农业科学》 CAS CSCD 北大核心 2012年第3期167-169,共3页
综合考虑T-S模型的精确性及快速性和BP神经网络的自适应能力,提出了基于T-S模型的模糊神经网络的森林健康评价模型,并利用MATLAB7.5编写程序。以小陇山油松林为例,进行计算,将结果呈送给多位小陇山林业专家,专家们对评价结果均满意。
关键词 t-s模糊模型 BP神经网络 森林健康评价 小陇山
在线阅读 下载PDF
基于T-S模糊神经网络的湿法脱硫效率预测 被引量:18
19
作者 李斌 邓煜 +1 位作者 边禹铭 齐年哲 《热力发电》 CAS 北大核心 2016年第6期116-119,124,共5页
由于影响脱硫效率的因素较多,且相互之间均具有关联性,造成脱硫效率难以实时监测,且测量结果不精准。本文运用T-S模糊神经网络建立了脱硫效率的预测模型,基于某电厂DCS采集的湿法脱硫系统原始数据,在MATLAB平台上进行训练与检验,得到较... 由于影响脱硫效率的因素较多,且相互之间均具有关联性,造成脱硫效率难以实时监测,且测量结果不精准。本文运用T-S模糊神经网络建立了脱硫效率的预测模型,基于某电厂DCS采集的湿法脱硫系统原始数据,在MATLAB平台上进行训练与检验,得到较精准的脱硫效率预测模型。模型验证结果显示:采用T-S模糊神经网络模型预测脱硫效率,85%的样本点相对误差分布在-1.0%~0.5%之间,最大误差不超过1.5%,说明该模型的预测精度较高,能较好地满足工程实际的需求。 展开更多
关键词 湿法脱硫 脱硫效率 t-s模糊神经网络 预测模型 MATLAB
在线阅读 下载PDF
GA优化T-S模糊神经网络的干燥窑温湿度控制器设计 被引量:4
20
作者 姜滨 孙丽萍 +1 位作者 曹军 季仲致 《实验室研究与探索》 CAS 北大核心 2015年第11期54-59,共6页
为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,结合模糊控制、神经网络和遗传算法的优点,设计了一种遗传算法(GA)优化的T-S模糊神经网络温湿度控制器。该控制器利用模糊算法解除木材干燥窑内温度和湿度间的强耦合关系,采用... 为了准确控制木材干燥过程的温度和湿度,提高木材干燥质量,结合模糊控制、神经网络和遗传算法的优点,设计了一种遗传算法(GA)优化的T-S模糊神经网络温湿度控制器。该控制器利用模糊算法解除木材干燥窑内温度和湿度间的强耦合关系,采用神经网络的自学习和自适应能力实现整个非线性过程的模糊逻辑推理,并通过遗传算法对神经网络的参数进行优化与训练,提高系统的自学习和自适应能力。仿真实验结果表明,在木材干燥过程的温湿度控制上,GA优化的T-S型模糊神经网络控制器具有良好的控制效果,控制器响应速度快、超调小并且具有一定的鲁棒性。 展开更多
关键词 干燥过程 遗传算法 t-s模型 模糊神经网络控制器 干燥窑
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部