In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent ...In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent quantitative PCR assay was established for detection of genetically modified maize line MON88017. The established method was evaluated based on the specificity, sensitivity, accuracy and measurement uncertainty. The results showed that the established method had strong specificity in detection of genetically modified maize line MON88017. 1.50% MON88017 sample was detected with 29 replica- tions. The average measured value ( 1. 541% ) was close to the actual value ( 1.50% ) and the relative deviation was 2.70%. The variation coefficient of the measured value was 0.110 g ; the recovery was 100.00% and the measurement uncertainty was 0. 096. The limit of detection for genetically modified maize line MON88017 with the established method was 5 copies at the 97.5% confidence level. Thus, the real-time fluorescent quantitative PCR assay established in this study exhibited high specificity, accuracy and sensitivity, which could provide technical support for the safety supervision of genetically modified organ- isms and products in China.展开更多
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo...Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.展开更多
An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on...An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.展开更多
基金Supported by Project of Standardization Technical System from the Administration of Quality and Technology Supervision of Sichuan Province(ZYBZ2013-39)
文摘In order to improve the standardized technical systems of quantitative analyses for genetically modified organisms (GMOs) and products, ensure bio-safety and reduce ecological risk in China, a real-time fluorescent quantitative PCR assay was established for detection of genetically modified maize line MON88017. The established method was evaluated based on the specificity, sensitivity, accuracy and measurement uncertainty. The results showed that the established method had strong specificity in detection of genetically modified maize line MON88017. 1.50% MON88017 sample was detected with 29 replica- tions. The average measured value ( 1. 541% ) was close to the actual value ( 1.50% ) and the relative deviation was 2.70%. The variation coefficient of the measured value was 0.110 g ; the recovery was 100.00% and the measurement uncertainty was 0. 096. The limit of detection for genetically modified maize line MON88017 with the established method was 5 copies at the 97.5% confidence level. Thus, the real-time fluorescent quantitative PCR assay established in this study exhibited high specificity, accuracy and sensitivity, which could provide technical support for the safety supervision of genetically modified organ- isms and products in China.
基金supported by the National Natural Science Foundation of China(Grant Nos.12072105,11932006,and 52308498)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220976).
文摘Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.
基金Supported by the National High Technology Research and Development Program of China(2012AA1406)
文摘An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.