期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Seislet transform denoising based on total variation minimization
1
作者 ZHANG Peng LIU Yang +3 位作者 LIU Cai CUI Fangzi YANG Xueting PEI Sijia 《Global Geology》 2015年第1期59-66,共8页
Attenuation of noise is a persistent problem in seismic exploration. The authors use conventional denoising method to remove noise which may cause vibration near the discontinuity called pseudo-Gibbs artifact.In order... Attenuation of noise is a persistent problem in seismic exploration. The authors use conventional denoising method to remove noise which may cause vibration near the discontinuity called pseudo-Gibbs artifact.In order to remove the artifact,the study proposed a method combining the seislet transform and total variation minimization. Firstly,the data are converted into the seislet transform domain. Secondly,the hard threshold was used for eliminating the noise and keep useful signal,which is the initial input for the next step. Finally,total variation minimization dealed with denoised data to recover boundary information and further eliminated the noise. Synthetic data examples show that the method has feasibility in eliminating random noise and protecting detailed signal,and also shows better results than the classic f-x deconvolution. The field data example also shows effective in practice. It can remove the noise and preserve the discontinuity signal at the same time. 展开更多
关键词 seislet transform total variation minimization hard threshold pseudo-Gibbs artifact removingrandom noise
在线阅读 下载PDF
Adaptive variational models for image decomposition combining staircase reduction and texture extraction 被引量:1
2
作者 Jiang Lingling Yin Haiqing Feng Xiangchu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第2期254-259,共6页
New models for image decomposition are proposed which separate an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures or noise. The proposed models are give... New models for image decomposition are proposed which separate an image into a cartoon, consisting only of geometric objects, and an oscillatory component, consisting of textures or noise. The proposed models are given in a variational formulation with adaptive regularization norms for both the cartoon and texture parts. The adaptive behavior preserves key features such as object boundaries and textures while avoiding staircasing in what should be smooth regions. This decomposition is computed by minimizing a convex functional which depends on the two variables u and v, alternatively in each variable. Experimental results and comparisons to validate the proposed models are presented. 展开更多
关键词 image decomposition total variation minimization bounded variation TEXTURE
在线阅读 下载PDF
Wavelet inverse scale space for image restoration 被引量:1
3
作者 Binbin Hao Jianguang Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期929-935,共7页
This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients... This paper proposes a model for image restoration by combining the wavelet shrinkage and inverse scale space (ISS) method. The ISS is applied to the wavelet representation to modify the retained wavelet coefficients, and the coefficients smaller than the threshold are set to zero. The curvature term of the ISS can remove the edge artifacts and preserve sharp edges. For the multiscale interpretation of the ISS and the multiscale property of the wavelet representation, small details are preserved. This paper illustrates that the wavelet ISS model can be deduced from the wavelet based on a total variation minimization problem. A stopping criterion is obtained from this minimization in the sense of the Bregman distance in the wavelet domain. Numerical examples show the improvement for the image denoising with the proposed method in the sense of the signal to noise ratio and with fewer details remained in the residue. 展开更多
关键词 wavelet shrinkage inverse scale space (ISS) curva-ture term total variation minimization image restoration.
在线阅读 下载PDF
Sparse Representation by Frames with Signal Analysis
4
作者 Christopher Baker 《Journal of Signal and Information Processing》 2016年第1期39-48,共10页
The use of frames is analyzed in Compressed Sensing (CS) through proofs and experiments. First, a new generalized Dictionary-Restricted Isometry Property (D-RIP) sparsity bound constant for CS is established. Second, ... The use of frames is analyzed in Compressed Sensing (CS) through proofs and experiments. First, a new generalized Dictionary-Restricted Isometry Property (D-RIP) sparsity bound constant for CS is established. Second, experiments with a tight frame to analyze sparsity and reconstruction quality using several signal and image types are shown. The constant  is used in fulfilling the definition of D-RIP. It is proved that k-sparse signals can be reconstructed if  by using a concise and transparent argument1. The approach could be extended to obtain other D-RIP bounds (i.e. ). Experiments contrast results of a Gabor tight frame with Total Variation minimization. In cases of practical interest, the use of a Gabor dictionary performs well when achieving a highly sparse representation and poorly when this sparsity is not achieved. 展开更多
关键词 Compressed Sensing total variation minimization l1-Analysis D-Restricted Isometry Property Tight Frames
在线阅读 下载PDF
Comparison of MRI Under-Sampling Techniques for Compressed Sensing with Translation Invariant Wavelets Using FastTestCS: A Flexible Simulation Tool
5
作者 Christopher Baker 《Journal of Signal and Information Processing》 2016年第4期252-271,共20页
A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to ... A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research. 展开更多
关键词 Compressed Sensing Translation Invariant Wavelet Simulation Software total variation l1 minimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部