U-Net因结构简单且高效被广泛应用于医学分割领域。然而,U-Net的跳跃连接不能很好地弥补编码器和解码器之间的语义差距。而医学分割数据的标注要求严格,使得数据集数量和规模都较小。针对上述问题,设计多尺度注意力融合(MSAF)模块,旨在...U-Net因结构简单且高效被广泛应用于医学分割领域。然而,U-Net的跳跃连接不能很好地弥补编码器和解码器之间的语义差距。而医学分割数据的标注要求严格,使得数据集数量和规模都较小。针对上述问题,设计多尺度注意力融合(MSAF)模块,旨在利用注意力机制可调整网络学习方向的特点和多尺度特征融合来有效缓解语义偏差。MSAF模块在前2个阶段使用通道注意力来捕获全局特征;在后2个阶段使用空间注意力来捕获局部特征;最后将多个阶段提取的特征进行融合以增强特征信息。此外,提出基于傅里叶变换的数据增强(FTDA)方法解决医学分割数据集稀少的问题。FTDA通过扰动输入图像在频域中的幅度信息实现其相位信息的数据增强。在MoNuSeg、CryoNuSeg和2018 Data Science Bowl数据集上的实验结果表明,提出方法的mIoU和Dice指标比其他先进方法表现出更好的性能。此外,提出的FTDA方法对小规模数据集也具有较好的增益效果。展开更多
异质图是由不同类型节点及边构成的图,可建模现实世界中各种类型对象及其关系。异质图嵌入旨在捕捉图中丰富的属性、结构和语义等信息,学习节点嵌入向量,用于节点分类、链接预测等任务,进而实现用户识别、商品推荐等应用。在异质图嵌入...异质图是由不同类型节点及边构成的图,可建模现实世界中各种类型对象及其关系。异质图嵌入旨在捕捉图中丰富的属性、结构和语义等信息,学习节点嵌入向量,用于节点分类、链接预测等任务,进而实现用户识别、商品推荐等应用。在异质图嵌入方法中,元路径通常被用来获取节点间的高阶结构和语义信息,然而现有方法忽略了元路径实例中不同类型节点或异质图中不同类型邻居节点的差异,导致信息丢失,进而影响节点嵌入质量。针对上述问题,提出基于数据增强的异质图注意力网络(Heterogeneous graph Attention Network based on Data Augmentation,HANDA),以更好地学习节点嵌入向量。首先,提出基于元路径邻居的边增强。该方法基于元路径获取节点的元路径邻居,用节点及其元路径邻居形成的语义边增强异质图。这些增强边不仅蕴含了节点间的高阶结构和语义,还缓解了异质图的稀疏性。其次,提出融入节点类型注意力的节点嵌入。该方法采用多头注意力从多个角度学习不同直接边邻居及增强边邻居的重要性并在注意力中融入节点的类型信息,进而通过消息传递、直接边邻居及增强边邻居同时获取节点的属性、高阶结构和语义信息,提升了节点嵌入质量。在真实数据集上的实验验证了HANDA模型在节点分类、链接预测任务上的效果优于基准模型。展开更多
高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关...高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关联信息.因此,文中提出融合数据质量增强和时空信息编码网络的船舶海上轨迹预测方法(Ship Maritime Trajectory Prediction Method Integrating Data Quality Enhancement and Spatio-Temporal Information Encoding Network,DQE-STIEN).首先,基于船舶轨迹数据的特征,设计结合哈希映射分类及局部离群哈希值异常检测的数据质量增强算法,对问题数据进行质量增强.然后,针对多属性的船舶轨迹数据,设计具有双编码通道的时空信息编码网络,充分提取并整合船舶轨迹数据中的位置信息与运动特征.最后,基于时空信息编码提取数据中的时空关联信息,并经解码生成完整的轨迹预测结果.在5个不同区域的AIS数据集上的实验表明DQE-STIEN性能较优.同时,DQE-STIEN具有一定的泛化性,也能有效分析能源、销售、环境和金融等领域的时序数据.展开更多
中文通感隐喻分析任务是隐喻领域的一个特定细分任务。由于通感语料中感觉词的分布不均匀,中文通感隐喻数据集存在数据稀疏的问题。为解决这一问题,利用真实训练数据中的稀疏感觉词数据作为提示,并使用大语言模型生成额外的合成样本进...中文通感隐喻分析任务是隐喻领域的一个特定细分任务。由于通感语料中感觉词的分布不均匀,中文通感隐喻数据集存在数据稀疏的问题。为解决这一问题,利用真实训练数据中的稀疏感觉词数据作为提示,并使用大语言模型生成额外的合成样本进行数据增强。为避免合成数据的引入造成的额外噪声影响模型性能,构建基于大语言模型的数据增强框架,并采用评分机制和标签误差优化机制减小合成数据和真实数据之间的分布差异。实验结果表明,所提框架可以生成高质量的合成数据来扩充数据集,在感觉词抽取和感觉领域分类任务上的总体F1值达到68.5%,比仅使用真实训练数据的基线模型T5(Text-To-Text Transfer Transformer)提升了2.7个百分点。展开更多
文摘U-Net因结构简单且高效被广泛应用于医学分割领域。然而,U-Net的跳跃连接不能很好地弥补编码器和解码器之间的语义差距。而医学分割数据的标注要求严格,使得数据集数量和规模都较小。针对上述问题,设计多尺度注意力融合(MSAF)模块,旨在利用注意力机制可调整网络学习方向的特点和多尺度特征融合来有效缓解语义偏差。MSAF模块在前2个阶段使用通道注意力来捕获全局特征;在后2个阶段使用空间注意力来捕获局部特征;最后将多个阶段提取的特征进行融合以增强特征信息。此外,提出基于傅里叶变换的数据增强(FTDA)方法解决医学分割数据集稀少的问题。FTDA通过扰动输入图像在频域中的幅度信息实现其相位信息的数据增强。在MoNuSeg、CryoNuSeg和2018 Data Science Bowl数据集上的实验结果表明,提出方法的mIoU和Dice指标比其他先进方法表现出更好的性能。此外,提出的FTDA方法对小规模数据集也具有较好的增益效果。
文摘异质图是由不同类型节点及边构成的图,可建模现实世界中各种类型对象及其关系。异质图嵌入旨在捕捉图中丰富的属性、结构和语义等信息,学习节点嵌入向量,用于节点分类、链接预测等任务,进而实现用户识别、商品推荐等应用。在异质图嵌入方法中,元路径通常被用来获取节点间的高阶结构和语义信息,然而现有方法忽略了元路径实例中不同类型节点或异质图中不同类型邻居节点的差异,导致信息丢失,进而影响节点嵌入质量。针对上述问题,提出基于数据增强的异质图注意力网络(Heterogeneous graph Attention Network based on Data Augmentation,HANDA),以更好地学习节点嵌入向量。首先,提出基于元路径邻居的边增强。该方法基于元路径获取节点的元路径邻居,用节点及其元路径邻居形成的语义边增强异质图。这些增强边不仅蕴含了节点间的高阶结构和语义,还缓解了异质图的稀疏性。其次,提出融入节点类型注意力的节点嵌入。该方法采用多头注意力从多个角度学习不同直接边邻居及增强边邻居的重要性并在注意力中融入节点的类型信息,进而通过消息传递、直接边邻居及增强边邻居同时获取节点的属性、高阶结构和语义信息,提升了节点嵌入质量。在真实数据集上的实验验证了HANDA模型在节点分类、链接预测任务上的效果优于基准模型。
文摘高精度的海上船舶轨迹预测是降低船舶碰撞风险、提升船舶搜救效率的重要基础.海上航行环境的多变性使船舶轨迹数据在时间和空间上具有高度复杂性,现有方法对船舶轨迹数据的质量及运动信息关注度不足,难以充分捕捉轨迹中的时空特征和关联信息.因此,文中提出融合数据质量增强和时空信息编码网络的船舶海上轨迹预测方法(Ship Maritime Trajectory Prediction Method Integrating Data Quality Enhancement and Spatio-Temporal Information Encoding Network,DQE-STIEN).首先,基于船舶轨迹数据的特征,设计结合哈希映射分类及局部离群哈希值异常检测的数据质量增强算法,对问题数据进行质量增强.然后,针对多属性的船舶轨迹数据,设计具有双编码通道的时空信息编码网络,充分提取并整合船舶轨迹数据中的位置信息与运动特征.最后,基于时空信息编码提取数据中的时空关联信息,并经解码生成完整的轨迹预测结果.在5个不同区域的AIS数据集上的实验表明DQE-STIEN性能较优.同时,DQE-STIEN具有一定的泛化性,也能有效分析能源、销售、环境和金融等领域的时序数据.
文摘中文通感隐喻分析任务是隐喻领域的一个特定细分任务。由于通感语料中感觉词的分布不均匀,中文通感隐喻数据集存在数据稀疏的问题。为解决这一问题,利用真实训练数据中的稀疏感觉词数据作为提示,并使用大语言模型生成额外的合成样本进行数据增强。为避免合成数据的引入造成的额外噪声影响模型性能,构建基于大语言模型的数据增强框架,并采用评分机制和标签误差优化机制减小合成数据和真实数据之间的分布差异。实验结果表明,所提框架可以生成高质量的合成数据来扩充数据集,在感觉词抽取和感觉领域分类任务上的总体F1值达到68.5%,比仅使用真实训练数据的基线模型T5(Text-To-Text Transfer Transformer)提升了2.7个百分点。