This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra...This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.展开更多
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ...We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.展开更多
To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosit...To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.展开更多
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ...Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.展开更多
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f...Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.展开更多
Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fra...Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.展开更多
The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results s...The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results show that THS incorporation can effectively improve the mechanical properties and reduce the volume shrinkage of HUHPC.The HUHPC with 50%THS replacement reaches an apparent density of 2890 kg/m^(3)(for fresh HUHPC),28 d compressive strength of 129 MPa,28 d flexural strength of 23 MPa,28 d flexural toughness of 28.4,56 d volume shrinkage of 359×10^(-4) and,as expected,excellent durability.Microstructural investigation demonstrates that the internal curing of pre-wetted THS promotes the hydration of the surrounding cement paste thereby strengthening the interfacial transition zone,resulting in the“hard shell”formation around aggregate to“protect”the aggregate.Additionally,the“pin structure”significantly improves the cement paste-aggregate interfacial connection.The combination of“hard shell protection”and“pin structure”remarkably improve the mechanical properties of HUHPC produced with porous THS aggregate.展开更多
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea...High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.展开更多
This study intends to find out the correlation between the cover depth and the bond characteristics of UHPC through pull-out tests of UHPC specimens with different cover depths and bond tests of rebar using flexural m...This study intends to find out the correlation between the cover depth and the bond characteristics of UHPC through pull-out tests of UHPC specimens with different cover depths and bond tests of rebar using flexural members. In this experimental study, specimens are fabricated with the lap-splice length as test variable in relation with the calculation of the lap-splice length for 180- MPa UHPC. Moreover, specimens are also fabricated with the cover depth as test variable to evaluate the effect of the cover depth on the UHPC flexural members. The load-displacement curves are analyzed for each of these test variables to compute the lap-splice length proposed in the K-UHPC structural design guideline and to evaluate the influence of the cover depth on the flexural members. As a result, the stability of the structural behavior can be significantly enhanced by increasing slightly the cover depth specification of the current UHPC Structure Design Guideline from the maximum value between 1.5 times of rebar diameter and 20 mm to the maximum value between 1.5 times of rebar diameter and 25 mm.展开更多
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC...This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.展开更多
This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (...This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.展开更多
Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This pa...Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This paper presents a retrofit method,integrating concepts of selective weakening and self-centering(rocking)to achieve low seismic damage for non-code compliant reinforced concrete shear walls.The proposed method involves con-verting traditional cast-in-place concrete shear walls into rocking walls,which helps to lower the shear demand,while allowing re-centering.Two large-scale lateral load tests were performed to validate the retrofit concept on a concrete shear wall designed according to pre-1970s standards.The design parameters investigated were amount of energy dissipating reinforcements and confinement enhancement.Two different methods using Ultra High Performance Concrete(UHPC)were investigated to provide additional confinement to boundary elements of older shear walls.Observations from the tests showed minimized damage and enhanced recentering in the retrofitted wall specimens.Use of UHPC in the boundary elements of the retrofitted walls provided additional confinement and reduced damage in the rocking corners.展开更多
Ultra-high performance concrete(UHPC)has gained a lot of attention lately because of its remarkable properties,even if its high cost and high carbon emissions run counter to the current development trend.To lower the ...Ultra-high performance concrete(UHPC)has gained a lot of attention lately because of its remarkable properties,even if its high cost and high carbon emissions run counter to the current development trend.To lower the cost and carbon emissions of UHPC,this study develops a multi-objective optimization framework that combines the non-dominated sorting genetic algorithm and 6 different machine learning methods to handle this issue.The key features of UHPC are filtered using the recursive feature elimination approach,and Bayesian optimization and random grid search are employed to optimize the hyperparameters of the machine learning prediction model.The optimal mix ratios of UHPC are found by applying the multi-objective algorithm non-dominated sorting genetic algorithm-Ⅲ and multiobjective evolutionary algorithm based on adaptive geometric estimation.The results are evaluated by technique for order preference by similarity to ideal solution and validated by experiments.The outcomes demonstrate that the compressive strength and slump flow of UHPC are correctly predicted by the machine learning models.The multiobjective optimization produces Pareto fronts,which illustrate the trade-off between the mix’s compressive strength,slump flow,cost,and environmental sustainability as well as the wide variety of possible solutions.The research contributes to the development of cost-effective and environmentally sustainable UHPC,and aids in robust,intelligent,and sustainable building practices.展开更多
利用超高性能混凝土(ultra high performance concrete, UHPC)材料特性,提出一种针对预制拼装桥墩的重力灌浆构造,即采用UHPC灌浆并依靠立柱自身重力完成拼接的插槽式连接构造。为研究该形式桥墩的抗震性能,设计完成了三个桥墩的拟静力...利用超高性能混凝土(ultra high performance concrete, UHPC)材料特性,提出一种针对预制拼装桥墩的重力灌浆构造,即采用UHPC灌浆并依靠立柱自身重力完成拼接的插槽式连接构造。为研究该形式桥墩的抗震性能,设计完成了三个桥墩的拟静力试验,分别为整体现浇墩Z1、新型插槽式连接墩P1及现有“I型”连接墩P2,并采用OpenSees有限元软件做模拟分析,与试验结果对比分析。结果表明:三个桥墩的破坏形式一致,均为弯曲破坏;Z1墩与P1墩滞回曲线呈梭形,滞回环较为饱满,且相同位移加载循环下的滞回路径较为吻合,P2墩接口处钢筋与混凝土间黏结滑移影响较大,导致滞回环面积减小,桥墩整体滞回耗能能力降低;P1墩的耗能能力较Z1墩和P2墩分别提升7.0%、10.7%,呈现峰值荷载小、失效速率慢、极限位移大、滞回耗能多的骨架趋势。试验结果与有限元模拟结果较为吻合,抗震性能参数差幅在10.0%以内,新型插槽式连接墩可应用于实际工程。展开更多
With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance c...With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.展开更多
基金supported by grants from the Natural Science Foundation of Fujian Province(2021J011062)Minjiang Scholars Funding(GY-633Z21067).
文摘This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.
基金Funed by the National Natural Science Foundation of China(No.U21A20149)the Ecological Environment Scientific Research Project of Anhui Province(No.2023hb0014)+2 种基金the Research Reserve of Anhui Jianzhu University(No.2022XMK01)the Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No.2022AH010017)Research on the preparation technology of self compacting concrete with strength grade C100.
文摘We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
基金Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.
基金the Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.
基金Funded by the National Natural Science Foundation of China,China(No.51438003)the National Key R&D Program of China,China(2018YFC0705400)
文摘Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form.
基金Funded by the National Natural Science Foundation of China (No. 50808101)Jiangsu Provincial Program for Basic Research (Natural Science Foundation) (No.BK2008417)China Postdoctoral Science Foundation (No. 20080431100)
文摘Ultra-high performance fiber reinforced concretes (UHPFRC) were prepared by replacing 60% of cement with ultra-fine industrial waste powder. The dynamic mechanical behaviour of UHPFRC with different fiber volume fraction was researched on repeated compressive impact in four kinds of impact modes through split Hopkinson pressure bar (SHPB). The experimental results show that the peak stress and elastic modulus decrease and the strain rate and peak strain increase gradually with the increasing of impact times. The initial material damage increases and the peak stress of the specimen decreases from the second impact with the increasing of the initial incident wave. Standard strength on repeated impact is defined to compare the ability of resistance against repeated impact among different materials. The rate of reduction of standard strength is decreased by fiber reinforcement under repeated impact. The material damage is reduced and the ability of repeated impact resistance of UHPFRC is improved with the increasing of fiber volume fraction.
基金Funded by National Natural Science Foundation of China(Nos.52008002,U2006224 and 51878003)Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University(No.2019QDZ66)。
文摘The heavyweight ultra-high performance concrete(HUHPC)was prepared with barite sand partially replaced by titanium-rich heavy slag sand(THS)at replacement proportion of 0%,30%,50%,70%and 100%in this work.The results show that THS incorporation can effectively improve the mechanical properties and reduce the volume shrinkage of HUHPC.The HUHPC with 50%THS replacement reaches an apparent density of 2890 kg/m^(3)(for fresh HUHPC),28 d compressive strength of 129 MPa,28 d flexural strength of 23 MPa,28 d flexural toughness of 28.4,56 d volume shrinkage of 359×10^(-4) and,as expected,excellent durability.Microstructural investigation demonstrates that the internal curing of pre-wetted THS promotes the hydration of the surrounding cement paste thereby strengthening the interfacial transition zone,resulting in the“hard shell”formation around aggregate to“protect”the aggregate.Additionally,the“pin structure”significantly improves the cement paste-aggregate interfacial connection.The combination of“hard shell protection”and“pin structure”remarkably improve the mechanical properties of HUHPC produced with porous THS aggregate.
基金National Natural Science Foundations of China(Nos.51478120,U1305245)
文摘High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.
文摘This study intends to find out the correlation between the cover depth and the bond characteristics of UHPC through pull-out tests of UHPC specimens with different cover depths and bond tests of rebar using flexural members. In this experimental study, specimens are fabricated with the lap-splice length as test variable in relation with the calculation of the lap-splice length for 180- MPa UHPC. Moreover, specimens are also fabricated with the cover depth as test variable to evaluate the effect of the cover depth on the UHPC flexural members. The load-displacement curves are analyzed for each of these test variables to compute the lap-splice length proposed in the K-UHPC structural design guideline and to evaluate the influence of the cover depth on the flexural members. As a result, the stability of the structural behavior can be significantly enhanced by increasing slightly the cover depth specification of the current UHPC Structure Design Guideline from the maximum value between 1.5 times of rebar diameter and 20 mm to the maximum value between 1.5 times of rebar diameter and 25 mm.
基金Funded by the National Natural Science Foundation of China (Nos.U21A20149, 51878003, 51908378)Research Reserve of Anhui Jianzhu University (No.2022XMK01)Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No. 2022AH010017)。
文摘This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.
文摘This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.
基金study described in this paper was made possible by a grant from the National Science Foundation’s Engineering for Natural Hazards(ENH)program,Grant#1662963.
文摘Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This paper presents a retrofit method,integrating concepts of selective weakening and self-centering(rocking)to achieve low seismic damage for non-code compliant reinforced concrete shear walls.The proposed method involves con-verting traditional cast-in-place concrete shear walls into rocking walls,which helps to lower the shear demand,while allowing re-centering.Two large-scale lateral load tests were performed to validate the retrofit concept on a concrete shear wall designed according to pre-1970s standards.The design parameters investigated were amount of energy dissipating reinforcements and confinement enhancement.Two different methods using Ultra High Performance Concrete(UHPC)were investigated to provide additional confinement to boundary elements of older shear walls.Observations from the tests showed minimized damage and enhanced recentering in the retrofitted wall specimens.Use of UHPC in the boundary elements of the retrofitted walls provided additional confinement and reduced damage in the rocking corners.
基金supported by the National Key R&D Program of China(No.2022YFB2602600)the National Natural Science Foundation of China(Grant No.52478235)+1 种基金the National Key R&D Program of China(No.2023YFB3711400)the Key Research and Development Program of Ningxia Hui Autonomous Region(No.2023BDE02004).
文摘Ultra-high performance concrete(UHPC)has gained a lot of attention lately because of its remarkable properties,even if its high cost and high carbon emissions run counter to the current development trend.To lower the cost and carbon emissions of UHPC,this study develops a multi-objective optimization framework that combines the non-dominated sorting genetic algorithm and 6 different machine learning methods to handle this issue.The key features of UHPC are filtered using the recursive feature elimination approach,and Bayesian optimization and random grid search are employed to optimize the hyperparameters of the machine learning prediction model.The optimal mix ratios of UHPC are found by applying the multi-objective algorithm non-dominated sorting genetic algorithm-Ⅲ and multiobjective evolutionary algorithm based on adaptive geometric estimation.The results are evaluated by technique for order preference by similarity to ideal solution and validated by experiments.The outcomes demonstrate that the compressive strength and slump flow of UHPC are correctly predicted by the machine learning models.The multiobjective optimization produces Pareto fronts,which illustrate the trade-off between the mix’s compressive strength,slump flow,cost,and environmental sustainability as well as the wide variety of possible solutions.The research contributes to the development of cost-effective and environmentally sustainable UHPC,and aids in robust,intelligent,and sustainable building practices.
文摘利用超高性能混凝土(ultra high performance concrete, UHPC)材料特性,提出一种针对预制拼装桥墩的重力灌浆构造,即采用UHPC灌浆并依靠立柱自身重力完成拼接的插槽式连接构造。为研究该形式桥墩的抗震性能,设计完成了三个桥墩的拟静力试验,分别为整体现浇墩Z1、新型插槽式连接墩P1及现有“I型”连接墩P2,并采用OpenSees有限元软件做模拟分析,与试验结果对比分析。结果表明:三个桥墩的破坏形式一致,均为弯曲破坏;Z1墩与P1墩滞回曲线呈梭形,滞回环较为饱满,且相同位移加载循环下的滞回路径较为吻合,P2墩接口处钢筋与混凝土间黏结滑移影响较大,导致滞回环面积减小,桥墩整体滞回耗能能力降低;P1墩的耗能能力较Z1墩和P2墩分别提升7.0%、10.7%,呈现峰值荷载小、失效速率慢、极限位移大、滞回耗能多的骨架趋势。试验结果与有限元模拟结果较为吻合,抗震性能参数差幅在10.0%以内,新型插槽式连接墩可应用于实际工程。
基金supported by the National Natural Science Foundation of China (51438003,51878507)
文摘With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.