Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was e...Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.展开更多
Topographic shielding(TS) is an important factor in cosmogenic nuclide surface exposure dating. The development of geographic information systems(GIS) and the availability of digital elevation models(DEMs) make it pos...Topographic shielding(TS) is an important factor in cosmogenic nuclide surface exposure dating. The development of geographic information systems(GIS) and the availability of digital elevation models(DEMs) make it possible to derive this factor directly from a DEM. Most available GIS models derive the TS factors for an area(all cells in a DEM) without the consideration of surface conditions of individual sites, such as the strike, dip,and height above ground, into the calculation. This paper presents a new GIS model to derive the TS factors for discrete sample sites. This model uses the Skyline and Skyline Graph functions in ArcGIS to extract the set of azimuth and elevation angles of topographic obstructions around each site from a DEM(considering the sample height above ground)and then incorporates the strike and dip information of the sample surface to derive the TS factor. All processing tools and steps are streamlined in ArcGIS modelbuilder and this model can be run like a standard ArcGIS geoprocessing tool. It provides an easy and user-friendly means to derive the TS factors for discrete samples based on a DEM and the measured strike, dip and sample height for each site.展开更多
In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landfor...In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.展开更多
Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertaint...Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.展开更多
Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the ...Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.展开更多
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availab...Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.展开更多
This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the la...This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.展开更多
Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe ...Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.展开更多
Digital Elevation Models (DEMs) are constructed using altitude point data and various interpolation techniques. The quality and accuracy of DEMs depend on data point density and the interpolation technique used. Usual...Digital Elevation Models (DEMs) are constructed using altitude point data and various interpolation techniques. The quality and accuracy of DEMs depend on data point density and the interpolation technique used. Usually however, altitude point data especially in plain areas do not provide realistic DEMs, mainly due to errors produced as a result of the interpolation technique, resulting in imprecise topographic representation of the landscape. Such inconsistencies, which are mainly in the form of surface depressions, are especially crucial when DEMs are used as input to hydrologic modeling for impact studies, as they have a negative impact on the model’s performance. This study presents a Geographical Information System (GIS) tool, named LAN (Line Attribute Network), for the improvement of DEM construction techniques and their spatial accuracy, using drainage network attributes. The developed tool does not alter the interpolation technique, but provides higher point density in areas where most DEM problems occur, such as lowland areas or places where artificial topographic features exist. Application of the LAN tool in two test sites showed that it provides considerable DEM improvement.展开更多
Utilizing multispectral satellite data and digital elevation models (DEMs) has emerged as the primary approach for cartographically representing landforms. By using high-resolution satellite photos that capture spatia...Utilizing multispectral satellite data and digital elevation models (DEMs) has emerged as the primary approach for cartographically representing landforms. By using high-resolution satellite photos that capture spatial, temporal, spectral, and radiometric data, one may get a fresh comprehension of the geomorphology of a particular area by recognizing its landforms. In addition, a synergistic method is used by using data produced from digital elevation models (DEMs) such as Slope, Aspect, Hillshade, Curvature, Contour Patterns, and 3-D Flythrough Visuals. The increasing use of UAV (drone) technology for obtaining high-resolution digital images and elevation models has become an essential element in developing complete topographic models in landslide scars that are very unstable and prone to erosion. Comparison (differences in values) of seven (7) different DEMs between two algorithms used, i.e., QGIS and White Box Tool (WBT), were successfully attempted in the present research. The TLS, UAV and Satellite data of the study area—Kshetrapal Landslide, Chamoli (District), Uttarakhand (State), India was subjected to two different algorithms (QGIS and WBT) to evaluate and differentiate seven different DEMs (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, MERIT, and FabDEM/FATHOM) taking into consideration various parameters viz. Aspect, Hillshade, Slope, Mean Curvature, Plan Curvature, Profile Curvature and Total Curvature. The different values of aforesaid parameters of various DEMs evaluated (using algorithms QIGS and WBT) reveal that only three parameters, i.e., Aspect, Hillshade, and Slope, show results. In contrast, the remaining ones do not show any meaningful results, and therefore, the comparison was possible only with regard to these three parameters. The comparison is drawn by comparing minimum, maximum, and elevation values (by subtracting WBT values from QGIS values) regarding Aspect, Hillshade, and Slope, arranging the differences in values as per their importance. (Increasing or decreasing order), assigning merit scores individually, and then cumulatively, and ascertaining the order of application suitability of various Dems, which stand in the order of (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, and MERIT, and FabDEM/FATHOM).展开更多
The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are resp...The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are responsible for initiation and development of ephemeral gullies.As the topographic features of an area significantly influences on the erosive power of the water flow,it is an important task the extraction of terrain features from DEM to properly research gully erosion.Alongside,topography is highly correlated with other geo-environmental factors i.e.geology,climate,soil types,vegetation density and floristic composition,runoff generation,which ultimately influences on gully occurrences.Therefore,terrain morphometric attributes derived from DEM data are used in spatial prediction of gully erosion susceptibility(GES)mapping.In this study,remote sensing-Geographic information system(GIS)techniques coupled with machine learning(ML)methods has been used for GES mapping in the parts of Semnan province,Iran.Current research focuses on the comparison of predicted GES result by using three types of DEM i.e.Advanced Land Observation satellite(ALOS),ALOS World 3D-30 m(AW3D30)and Advanced Space borne Thermal Emission and Reflection Radiometer(ASTER)in different resolutions.For further progress of our research work,here we have used thirteen suitable geo-environmental gully erosion conditioning factors(GECFs)based on the multi-collinearity analysis.ML methods of conditional inference forests(Cforest),Cubist model and Elastic net model have been chosen for modelling GES accordingly.Variable’s importance of GECFs was measured through sensitivity analysis and result show that elevation is the most important factor for occurrences of gullies in the three aforementioned ML methods(Cforest=21.4,Cubist=19.65 and Elastic net=17.08),followed by lithology and slope.Validation of the model’s result was performed through area under curve(AUC)and other statistical indices.The validation result of AUC has shown that Cforest is the most appropriate model for predicting the GES assessment in three different DEMs(AUC value of Cforest in ALOS DEM is 0.994,AW3D30 DEM is 0.989 and ASTER DEM is 0.982)used in this study,followed by elastic net and cubist model.The output result of GES maps will be used by decision-makers for sustainable development of degraded land in this study area.展开更多
A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant co...A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected.展开更多
基金This work was supported by Knowledge Innovation Pro-gram Chinese Academy of Sciences (No. KZCX2-SW-320-3 & KZCX3-SW-425).
文摘Boundary extraction of watershed is an important step in forest landscape research. The boundary of the upriver wa-tershed of the Hunhe River in the sub-alpine Qingyuan County of eastern Liaoning Province, China was extracted by digital elevation modeling (DEM) data in ArcInfo8.1. Remote sensing image of the corresponding region was applied to help modify its copy according to Enhanced Thematic Mapper (ETM) image抯 profuse geomorphological structure information. Both the DEM-dependent boundary and modified copy were overlapped with county map and drainage network map to visually check the effects of result. Overlap of county map suggested a nice extraction of the boundary line since the two layers matched precisely, which indicated the DEM-dependent boundary by program was effective and precise. Further upload of drainage network showed discrepancies between the boundary and the drainage network. Altogether, there were three sections of the extraction result that needed to correct. Compared with this extraction boundary, the modified boundary had a better match to the drainage network as well as to the county map. Comprehensive analysis demonstrated that the program extraction has generally fine precision in position and excels the digitized result by hand. The errors of the DEM-dependant extraction are due to the fact that it is difficult for program to recognize sections of complex landform especially altered by human activities, but these errors are discernable and adjustable because the spatial resolution of ETM image is less than that of DEM. This study result proved that application of remote sensing information could help obtain better result when DEM method is used in extraction of watershed boundary.
基金support by the National Science Foundation of the United States(Grant No.BCS-1227018)the National Nature Science Foundation of China(Grant No.41328001)
文摘Topographic shielding(TS) is an important factor in cosmogenic nuclide surface exposure dating. The development of geographic information systems(GIS) and the availability of digital elevation models(DEMs) make it possible to derive this factor directly from a DEM. Most available GIS models derive the TS factors for an area(all cells in a DEM) without the consideration of surface conditions of individual sites, such as the strike, dip,and height above ground, into the calculation. This paper presents a new GIS model to derive the TS factors for discrete sample sites. This model uses the Skyline and Skyline Graph functions in ArcGIS to extract the set of azimuth and elevation angles of topographic obstructions around each site from a DEM(considering the sample height above ground)and then incorporates the strike and dip information of the sample surface to derive the TS factor. All processing tools and steps are streamlined in ArcGIS modelbuilder and this model can be run like a standard ArcGIS geoprocessing tool. It provides an easy and user-friendly means to derive the TS factors for discrete samples based on a DEM and the measured strike, dip and sample height for each site.
基金Under the auspices of National Youth Science Foundation of China(No.41001294)Key Project of National Natural Science Foundation of China(No.40930531)Research Fund of State Key Laboratory Resources and Environment Information System(No.2010KF0002SA)
文摘In China′s Loess Plateau area, gully head is the most active zone of a drainage system in gully areas. The differentiation of loess gully head follows geospatial patterns and reflects the process of the loess landform development and evolution of its drainage system to some extent. In this study, the geomorphic meaning, basic characteristics, morphological structure and the basic types of loess gully heads were systematically analysed. Then, the loess gully head′s conceptual model was established, and an extraction method based on Digital Elevation Model(DEM) for loess gully head features and elements was proposed. Through analysing the achieved statistics of loess gully head features, loess gully heads have apparently similar and different characteristics depending on the different loess landforms where they are found. The loess head characteristics reflect their growth period and evolution tendency to a certain degree, and they indirectly represent evolutionary mechanisms. In addition, the loess gully developmental stages and the evolutionary processes can be deduced by using loess gully head characteristics. This study is of great significance for development and improvement of the theoretical system for describing loess gully landforms.
基金supported by the Professional Development Award of the University of Tennessee
文摘Topographic shielding of cosmic radiation flux is a key parameter in using cosmogenic nuclides to determine surface exposure ages or erosion rates. Traditionally, this parameter is measured in the field and uncertainty and/or inconsistency may exist among different investigators. This paper provides an ArcGIS python code to determine topographic shielding factors using digital elevation models (DEMs). This code can be imported into ArcGIS as a geoprocessing tool with a user-friendly graphical interface. The DEM-derived parameters using this method were validated with field measurements in central Tian Shan. Results indicate that DEM-derived shielding factors are consistent with field-measured values. It provides a valuable tool to save fieldwork efforts and has the potential to provide consistent results for different regions in the world to facilitate the comparison of cosmogenie nuclide results.
基金partially supported by JSPS KAKENHI(Grant No.16H03153)the Limestone Association of Japan。
文摘Displacement monitoring in open-pit mines is one of the important tasks for safe management of mining processes.Differential interferometric synthetic aperture radar(DInSAR),mounted on an artificial satellite,has the potential to be a cost-effective method for monitoring surface displacements over extensive areas,such as open-pit mines.DInSAR requires the ground surface elevation data in the process of its analysis as a digital elevation model(DEM).However,since the topography of the ground surface in open-pit mines changes largely due to excavations,measurement errors can occur due to insufficient information on the elevation of mining areas.In this paper,effect of different elevation models on the accuracy of the displacement monitoring results by DInSAR is investigated at a limestone quarry.In addition,validity of the DInSAR results using an appropriate DEM is examined by comparing them with the results obtained by global positioning system(GPS)monitoring conducted for three years at the same limestone quarry.It is found that the uncertainty of DEMs induces large errors in the displacement monitoring results if the baseline length of the satellites between the master and the slave data is longer than a few hundred meters.Comparing the monitoring results of DInSAR and GPS,the root mean square error(RMSE)of the discrepancy between the two sets of results is less than 10 mm if an appropriate DEM,considering the excavation processes,is used.It is proven that DInSAR can be applied for monitoring the displacements of mine slopes with centimeter-level accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.41471316,41401456)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD(Grant No.164320H101)+1 种基金Major University Science Research Project of Jiangsu Province(Grant No.13KJA170001)the financial support provided by the PhD Scholarship from Eurasic Pacific Uninet for collaboration research in Austria
文摘Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.
文摘This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty.
基金Funded by the Natural Science Foundation of Chongqing under Grant No. CSTC2006AB1015.
文摘Researchers in P.R.China commonly create triangulate irregular networks(TINs) from contours and then convert TINs into digital elevation models(DEMs).However,the DEM produced by this method can not precisely describe and simulate key hydrological features such as rivers and drainage borders.Taking a hilly region in southwestern China as a research area and using ArcGISTM software,we analyzed the errors of different interpolations to obtain distributions of the errors and precisions of different algorithms and to provide references for DEM productions.The results show that different interpolation errors satisfy normal distributions,and large error exists near the structure line of the terrain.Furthermore,the results also show that the precision of a DEM interpolated with the Australian National University digital elevation model(ANUDEM) is higher than that interpolated with TIN.The DEM interpolated with TIN is acceptable for generating DEMs in the hilly region of southwestern China.
文摘Digital Elevation Models (DEMs) are constructed using altitude point data and various interpolation techniques. The quality and accuracy of DEMs depend on data point density and the interpolation technique used. Usually however, altitude point data especially in plain areas do not provide realistic DEMs, mainly due to errors produced as a result of the interpolation technique, resulting in imprecise topographic representation of the landscape. Such inconsistencies, which are mainly in the form of surface depressions, are especially crucial when DEMs are used as input to hydrologic modeling for impact studies, as they have a negative impact on the model’s performance. This study presents a Geographical Information System (GIS) tool, named LAN (Line Attribute Network), for the improvement of DEM construction techniques and their spatial accuracy, using drainage network attributes. The developed tool does not alter the interpolation technique, but provides higher point density in areas where most DEM problems occur, such as lowland areas or places where artificial topographic features exist. Application of the LAN tool in two test sites showed that it provides considerable DEM improvement.
文摘Utilizing multispectral satellite data and digital elevation models (DEMs) has emerged as the primary approach for cartographically representing landforms. By using high-resolution satellite photos that capture spatial, temporal, spectral, and radiometric data, one may get a fresh comprehension of the geomorphology of a particular area by recognizing its landforms. In addition, a synergistic method is used by using data produced from digital elevation models (DEMs) such as Slope, Aspect, Hillshade, Curvature, Contour Patterns, and 3-D Flythrough Visuals. The increasing use of UAV (drone) technology for obtaining high-resolution digital images and elevation models has become an essential element in developing complete topographic models in landslide scars that are very unstable and prone to erosion. Comparison (differences in values) of seven (7) different DEMs between two algorithms used, i.e., QGIS and White Box Tool (WBT), were successfully attempted in the present research. The TLS, UAV and Satellite data of the study area—Kshetrapal Landslide, Chamoli (District), Uttarakhand (State), India was subjected to two different algorithms (QGIS and WBT) to evaluate and differentiate seven different DEMs (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, MERIT, and FabDEM/FATHOM) taking into consideration various parameters viz. Aspect, Hillshade, Slope, Mean Curvature, Plan Curvature, Profile Curvature and Total Curvature. The different values of aforesaid parameters of various DEMs evaluated (using algorithms QIGS and WBT) reveal that only three parameters, i.e., Aspect, Hillshade, and Slope, show results. In contrast, the remaining ones do not show any meaningful results, and therefore, the comparison was possible only with regard to these three parameters. The comparison is drawn by comparing minimum, maximum, and elevation values (by subtracting WBT values from QGIS values) regarding Aspect, Hillshade, and Slope, arranging the differences in values as per their importance. (Increasing or decreasing order), assigning merit scores individually, and then cumulatively, and ascertaining the order of application suitability of various Dems, which stand in the order of (CARTOSAT, ASTER, SRTM, Alos 3D, TanDEM, and MERIT, and FabDEM/FATHOM).
文摘城市地表特征的正确表达,尤其是地表微地形结构的正确处理是影响内涝模型准确性的主要因素.为了实现高精度的城市内涝模拟,以传统地形测绘数据为基础,对城市地表DEM标准处理方法进行了研究.研究内容包括地表伪洼蓄点的修正处理方法、城市道路地形的处理方法和建筑物高度修正处理方法,并通过实例研究说明了方法应用的流程和效果.研究通过ArcGIS水文分析模块实现了洼地区域的识别和修正;通过不同类型建筑物离地高度的DEM修正,实现了建筑物影响下的周边水流运动过程模拟;通过道路地形的拟合加密,有效解决现有道路测绘高程数据不足的问题,实现了轮廓清晰、路面平滑的道路地形构建.通过案例研究表明,地形处理对模型计算结果将造成较大影响,案例区域不同降雨情景,地形处理前后的积水深度数值偏差达到10.5%~63.3%,深度差值为0.14~0.38 m.
文摘The geomorphic studies are extremely dependent on the quality and spatial resolution of digital elevation model(DEM)data.The unique terrain characteristics of a particular landscape are derived from DEM,which are responsible for initiation and development of ephemeral gullies.As the topographic features of an area significantly influences on the erosive power of the water flow,it is an important task the extraction of terrain features from DEM to properly research gully erosion.Alongside,topography is highly correlated with other geo-environmental factors i.e.geology,climate,soil types,vegetation density and floristic composition,runoff generation,which ultimately influences on gully occurrences.Therefore,terrain morphometric attributes derived from DEM data are used in spatial prediction of gully erosion susceptibility(GES)mapping.In this study,remote sensing-Geographic information system(GIS)techniques coupled with machine learning(ML)methods has been used for GES mapping in the parts of Semnan province,Iran.Current research focuses on the comparison of predicted GES result by using three types of DEM i.e.Advanced Land Observation satellite(ALOS),ALOS World 3D-30 m(AW3D30)and Advanced Space borne Thermal Emission and Reflection Radiometer(ASTER)in different resolutions.For further progress of our research work,here we have used thirteen suitable geo-environmental gully erosion conditioning factors(GECFs)based on the multi-collinearity analysis.ML methods of conditional inference forests(Cforest),Cubist model and Elastic net model have been chosen for modelling GES accordingly.Variable’s importance of GECFs was measured through sensitivity analysis and result show that elevation is the most important factor for occurrences of gullies in the three aforementioned ML methods(Cforest=21.4,Cubist=19.65 and Elastic net=17.08),followed by lithology and slope.Validation of the model’s result was performed through area under curve(AUC)and other statistical indices.The validation result of AUC has shown that Cforest is the most appropriate model for predicting the GES assessment in three different DEMs(AUC value of Cforest in ALOS DEM is 0.994,AW3D30 DEM is 0.989 and ASTER DEM is 0.982)used in this study,followed by elastic net and cubist model.The output result of GES maps will be used by decision-makers for sustainable development of degraded land in this study area.
基金supported by the National Natural Science Foundation of China (10702003)
文摘A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected.