The anti-tumor activity of Trichosanthin (TCS) has been frequently reported in recent years. In our experiments, electrochemical methods were applied to detect the effects of TCS on human leukemia cells U937. 50 mu g/...The anti-tumor activity of Trichosanthin (TCS) has been frequently reported in recent years. In our experiments, electrochemical methods were applied to detect the effects of TCS on human leukemia cells U937. 50 mu g/ml TCS treatment for 40 hours can cause irreversible negative effects on the viability of U937 cells. This effect largely depends on the concentration of TCS and the time period of treatment.展开更多
In this paper,we report a method for obtaining a visual voltammogram at a linear array of closed wireless bipolar electrodes(BPEs).This advancement is significant,because the visual voltammogram captures the entire cu...In this paper,we report a method for obtaining a visual voltammogram at a linear array of closed wireless bipolar electrodes(BPEs).This advancement is significant,because the visual voltammogram captures the entire current-potential(i-E)relationship of a faradaic reaction in one image and is continuously generated over time.Therefore,we anticipate that this method will allow monitoring in redox systems that change over time.Further,the use of a linear array of BPEs eliminates the need to use a potentiostat and can be carried out with a simple DC power supply.Our experimental and numerical results demonstrate that the visual voltammogram is similar to a linear sweep voltammogram and therefore,information about the faradaic process can be extracted from the wave position,height,and shape.展开更多
For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media wa...For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media was selected on the basis of the Pourbaix potential-pH diagram, which provides informations on the predominance of Zr<sup>(IV) </sup> ion and Zr in aqueous media. In aqueous media, analyzes were first carried out in acidic media then in basic media. Studies have thus revealed that the acidic environment is not favourable for the electrochemical analysis of zirconium. Voltammograms obtained in an acidic environment show no zirconium detection signal;this is due to the strong presence of H<sup>+</sup> ions in the solution. We have also observed in acidic media the phenomenon of passivation of the electrode surface. In aqueous alkaline media (pH = 13), we have drawn in reduction several Intensity-Potential curves by fixingsome technical parameterslike scanning speed, rotation speed of the electrode. The obtained voltammograms show cathodic waves, starting from -1.5 V/DHW and attributed to the reduction of Zr<sup> (IV) </sup> to Zr (0). The last phase of this study focused on the electrochemical analysis of zirconium in an organic media. In this media, several intensity-potential curves were plotted in reduction and in cyclic voltammetry with various parameters. Through several reduction analysis, the Zr<sup> (IV) </sup> was reduced to Zr (0) to the potential of -1.5 V/DHW. The electrochemical analysis of zirconium in organic media seems globally easier to achieve thanks to its large solvent window (i.e. dimethylformamide (DMF) solvent window > 6 V).展开更多
文摘The anti-tumor activity of Trichosanthin (TCS) has been frequently reported in recent years. In our experiments, electrochemical methods were applied to detect the effects of TCS on human leukemia cells U937. 50 mu g/ml TCS treatment for 40 hours can cause irreversible negative effects on the viability of U937 cells. This effect largely depends on the concentration of TCS and the time period of treatment.
文摘In this paper,we report a method for obtaining a visual voltammogram at a linear array of closed wireless bipolar electrodes(BPEs).This advancement is significant,because the visual voltammogram captures the entire current-potential(i-E)relationship of a faradaic reaction in one image and is continuously generated over time.Therefore,we anticipate that this method will allow monitoring in redox systems that change over time.Further,the use of a linear array of BPEs eliminates the need to use a potentiostat and can be carried out with a simple DC power supply.Our experimental and numerical results demonstrate that the visual voltammogram is similar to a linear sweep voltammogram and therefore,information about the faradaic process can be extracted from the wave position,height,and shape.
文摘For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media was selected on the basis of the Pourbaix potential-pH diagram, which provides informations on the predominance of Zr<sup>(IV) </sup> ion and Zr in aqueous media. In aqueous media, analyzes were first carried out in acidic media then in basic media. Studies have thus revealed that the acidic environment is not favourable for the electrochemical analysis of zirconium. Voltammograms obtained in an acidic environment show no zirconium detection signal;this is due to the strong presence of H<sup>+</sup> ions in the solution. We have also observed in acidic media the phenomenon of passivation of the electrode surface. In aqueous alkaline media (pH = 13), we have drawn in reduction several Intensity-Potential curves by fixingsome technical parameterslike scanning speed, rotation speed of the electrode. The obtained voltammograms show cathodic waves, starting from -1.5 V/DHW and attributed to the reduction of Zr<sup> (IV) </sup> to Zr (0). The last phase of this study focused on the electrochemical analysis of zirconium in an organic media. In this media, several intensity-potential curves were plotted in reduction and in cyclic voltammetry with various parameters. Through several reduction analysis, the Zr<sup> (IV) </sup> was reduced to Zr (0) to the potential of -1.5 V/DHW. The electrochemical analysis of zirconium in organic media seems globally easier to achieve thanks to its large solvent window (i.e. dimethylformamide (DMF) solvent window > 6 V).