期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
Distributed bearing-only target tracking algorithm based on variational Bayesian inference under random measurement anomalies
1
作者 YANG Haoran CHEN Yu +1 位作者 HU Zhentao JIA Haoqian 《High Technology Letters》 2025年第1期86-94,共9页
A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the ... A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios. 展开更多
关键词 bearing-only target tracking(BOTT) variational bayesian inference(vbI) Student-t distribution cubature Kalman filter(CKF) distributed fusion
在线阅读 下载PDF
vbICA方法用于GNSS坐标序列共模误差提取研究 被引量:1
2
作者 张双成 李军 +4 位作者 安宁康 冯智杰 吕佳明 王杰 叶志磊 《大地测量与地球动力学》 CSCD 北大核心 2024年第5期450-455,共6页
全球导航卫星系统(global navigation satellite system,GNSS)坐标序列精度主要受共模误差(common mode error,CME)影响。为提高GNSS坐标序列精度,采用变分贝叶斯独立分量分析方法(variational Bayesian independent component analysis... 全球导航卫星系统(global navigation satellite system,GNSS)坐标序列精度主要受共模误差(common mode error,CME)影响。为提高GNSS坐标序列精度,采用变分贝叶斯独立分量分析方法(variational Bayesian independent component analysis,vbICA)提取实验区20个GNSS测站坐标序列的CME,并对比分析vbICA与主成分分析(principal component analysis,PCA)和独立分量分析(independent component analysis,ICA)的滤波性能。结果表明,vbICA滤波效果优于PCA和ICA;经vbICA滤波后,E、N、U方向坐标残差序列均方根(RMS)平均降低36.57%、31.63%、10.97%,距离相关系数平均降低60.53%、56.84%、25.80%;扣除CME后,GNSS速度场估计更加可靠和精确,可有效提高GNSS坐标序列精度,为地球动力学研究提供可靠的数据支撑。 展开更多
关键词 GNSS坐标序列 变分贝叶斯独立分量分析 共模误差 距离相关系数 速度场
在线阅读 下载PDF
环境激励下的Bayesian SFFT模态参数识别法及不确定性量化研究
3
作者 郭琦 张卓 蒲广宁 《振动与冲击》 EI CSCD 北大核心 2024年第23期194-202,共9页
针对传统Bayesian模态参数识别方法存在识别结果不确定性和量化指标单一的问题,提出了贝叶斯缩放快速傅里叶变换(Bayesian scaled fast Fourier transform,Bayesian SFFT)模态参数识别法,通过求解四维数值的优化,得到模态参数的最佳估值... 针对传统Bayesian模态参数识别方法存在识别结果不确定性和量化指标单一的问题,提出了贝叶斯缩放快速傅里叶变换(Bayesian scaled fast Fourier transform,Bayesian SFFT)模态参数识别法,通过求解四维数值的优化,得到模态参数的最佳估值,并采用蒙特卡罗抽样的方法得到后验协方差矩阵和信息熵,实现对识别结果进行双重不确定性量化的目的。最后,通过数值模拟与工程应用验证了该方法的有效性,并研究了频带宽度系数k对识别结果的影响以及对比了变异系数与信息熵的量化效果。结果表明,将频带宽度系数k限制在7~9之间能够确保误差与不确定性的平衡;在阻尼比识别结果的量化中,信息熵的量化效果优于变异系数的量化效果。 展开更多
关键词 模态参数识别 不确定性量化 贝叶斯缩放快速傅里叶变换(bayesian SFFT) 蒙特卡罗抽样 频带宽度系数 变异系数 信息熵
在线阅读 下载PDF
Variational Bayesian Based IMM Robust GPS Navigation Filter 被引量:2
4
作者 Dah-Jing Jwo Wei-Yeh Chang 《Computers, Materials & Continua》 SCIE EI 2022年第7期755-773,共19页
This paper investigates the navigational performance of Global Positioning System(GPS)using the variational Bayesian(VB)based robust filter with interacting multiple model(IMM)adaptation as the navigation processor.Th... This paper investigates the navigational performance of Global Positioning System(GPS)using the variational Bayesian(VB)based robust filter with interacting multiple model(IMM)adaptation as the navigation processor.The performance of the state estimation for GPS navigation processing using the family ofKalman filter(KF)may be degraded due to the fact that in practical situations the statistics of measurement noise might change.In the proposed algorithm,the adaptivity is achieved by estimating the timevarying noise covariance matrices based onVB learning using the probabilistic approach,where in each update step,both the system state and time-varying measurement noise were recognized as random variables to be estimated.The estimation is iterated recursively at each time to approximate the real joint posterior distribution of state using the VB learning.One of the two major classical adaptive Kalman filter(AKF)approaches that have been proposed for tuning the noise covariance matrices is the multiple model adaptive estimate(MMAE).The IMM algorithm uses two or more filters to process in parallel,where each filter corresponds to a different dynamic or measurement model.The robust Huber’s M-estimation-based extended Kalman filter(HEKF)algorithm integrates both merits of the Huber M-estimation methodology and EKF.The robustness is enhanced by modifying the filter update based on Huber’s M-estimation method in the filtering framework.The proposed algorithm,referred to as the interactive multi-model based variational Bayesian HEKF(IMM-VBHEKF),provides an effective way for effectively handling the errors with time-varying and outlying property of non-Gaussian interference errors,such as the multipath effect.Illustrative examples are given to demonstrate the navigation performance enhancement in terms of adaptivity and robustness at the expense of acceptable additional execution time. 展开更多
关键词 GPS variational bayesian Huber’sM-estimation interacting multiple model adaptive OUTLIER MULTIPATH
在线阅读 下载PDF
Variational Inference Based Kernel Dynamic Bayesian Networks for Construction of Prediction Intervals for Industrial Time Series With Incomplete Input 被引量:2
5
作者 Long Chen Linqing Wang +2 位作者 Zhongyang Han Jun Zhao Wei Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1437-1445,共9页
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo... Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one. 展开更多
关键词 Industrial time series kernel dynamic bayesian networks(KDBN) prediction intervals(PIs) variational inference
在线阅读 下载PDF
Skew t Distribution-Based Nonlinear Filter with Asymmetric Measurement Noise Using Variational Bayesian Inference 被引量:1
6
作者 Chen Xu Yawen Mao +2 位作者 Hongtian Chen Hongfeng Tao Fei Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期349-364,共16页
This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs ... This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters. 展开更多
关键词 Nonlinear filter asymmetric measurement noise skew t distribution unknown noise statistics variational bayesian inference
在线阅读 下载PDF
Robust SLAM localization method based on improved variational Bayesian filtering 被引量:1
7
作者 Zhai Hongqi Wang Lihui +1 位作者 Cai Tijing Meng Qian 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期340-349,共10页
Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outli... Aimed at the problem that the state estimation in the measurement update of the simultaneous localization and mapping(SLAM)method is incorrect or even not convergent because of the non-Gaussian measurement noise,outliers,or unknown and time-varying noise statistical characteristics,a robust SLAM method based on the improved variational Bayesian adaptive Kalman filtering(IVBAKF)is proposed.First,the measurement noise covariance is estimated using the variable Bayesian adaptive filtering algorithm.Then,the estimated covariance matrix is robustly processed through the weight function constructed in the form of a reweighted average.Finally,the system updates are iterated multiple times to further gradually correct the state estimation error.Furthermore,to observe features at different depths,a feature measurement model containing depth parameters is constructed.Experimental results show that when the measurement noise does not obey the Gaussian distribution and there are outliers in the measurement information,compared with the variational Bayesian adaptive SLAM method,the positioning accuracy of the proposed method is improved by 17.23%,20.46%,and 17.76%,which has better applicability and robustness to environmental disturbance. 展开更多
关键词 underwater navigation and positioning non-Gaussian distribution time-varying noise variational bayesian method simultaneous localization and mapping(SLAM)
在线阅读 下载PDF
Forward Affine Point Set Matching Under Variational Bayesian Framework 被引量:1
8
作者 QU Han-Bing CHEN Xi +1 位作者 WANG Song-Tao YU Ming 《自动化学报》 EI CSCD 北大核心 2015年第8期1482-1494,共13页
关键词 贝叶斯 点集 匹配 仿射 框架 变分 逼近算法 线性变换
在线阅读 下载PDF
Astronomical image restoration using variational Bayesian blind deconvolution
9
作者 Xiaoping Shi Rui Guo +1 位作者 Yi Zhu Zicai Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1236-1247,共12页
An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic para... An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously. Through utilization of variational Bayesian analysis,approximations of the posterior distributions on each unknown are obtained by minimizing the Kullback-Leibler(KL) distance, thus providing uncertainties of the estimates during the restoration process. Experimental results on both synthetic images and real astronomical images demonstrate that the proposed approaches compare favorably to other state-of-the-art reconstruction methods. 展开更多
关键词 blind deconvolution variational bayesian model com bination astronomical image processing
在线阅读 下载PDF
Gridless Variational Bayesian Inference of Line Spectral from Quantized Samples
10
作者 Jiang Zhu Qi Zhang Xiangming Meng 《China Communications》 SCIE CSCD 2021年第10期77-95,共19页
Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of a... Efficient estimation of line spectral from quantized samples is of significant importance in information theory and signal processing,e.g.,channel estimation in energy efficient massive MIMO systems and direction of arrival estimation.The goal of this paper is to recover the line spectral as well as its corresponding parameters including the model order,frequencies and amplitudes from heavily quantized samples.To this end,we propose an efficient gridless Bayesian algorithm named VALSE-EP,which is a combination of the high resolution and low complexity gridless variational line spectral estimation(VALSE)and expectation propagation(EP).The basic idea of VALSE-EP is to iteratively approximate the challenging quantized model of line spectral estimation as a sequence of simple pseudo unquantized models,where VALSE is applied.Moreover,to obtain a benchmark of the performance of the proposed algorithm,the Cram′er Rao bound(CRB)is derived.Finally,numerical experiments on both synthetic and real data are performed,demonstrating the near CRB performance of the proposed VALSE-EP for line spectral estimation from quantized samples. 展开更多
关键词 variational bayesian inference expectation propagation QUANTIZATION line spectral estimation MMSE gridless
在线阅读 下载PDF
Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty
11
作者 HU Zhentao JIA Haoqian GONG Delong 《High Technology Letters》 EI CAS 2022年第4期354-362,共9页
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand... A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene. 展开更多
关键词 variational bayesian inference cubature Kalman filter(CKF) measurement uncertainty Inverse-Wishart(IW)distribution
在线阅读 下载PDF
Gaussian-Student's t mixture distribution PHD robust filtering algorithm based on variational Bayesian inference
12
作者 HU Zhentao YANG Linlin +1 位作者 HU Yumei YANG Shibo 《High Technology Letters》 EI CAS 2022年第2期181-189,共9页
Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution proba... Aiming at the problem of filtering precision degradation caused by the random outliers of process noise and measurement noise in multi-target tracking(MTT) system,a new Gaussian-Student’s t mixture distribution probability hypothesis density(PHD) robust filtering algorithm based on variational Bayesian inference(GST-vbPHD) is proposed.Firstly,since it can accurately describe the heavy-tailed characteristics of noise with outliers,Gaussian-Student’s t mixture distribution is employed to model process noise and measurement noise respectively.Then Bernoulli random variable is introduced to correct the likelihood distribution of the mixture probability,leading hierarchical Gaussian distribution constructed by the Gaussian-Student’s t mixture distribution suitable to model non-stationary noise.Finally,the approximate solutions including target weights,measurement noise covariance and state estimation error covariance are obtained according to variational Bayesian inference approach.The simulation results show that,in the heavy-tailed noise environment,the proposed algorithm leads to strong improvements over the traditional PHD filter and the Student’s t distribution PHD filter. 展开更多
关键词 multi-target tracking(MTT) variational bayesian inference Gaussian-Student’s t mixture distribution heavy-tailed noise
在线阅读 下载PDF
基于VBEM的一致受限字典织物图像重构模型
13
作者 陈影柔 吕文涛 +2 位作者 余润泽 郭庆 徐羽贞 《现代纺织技术》 北大核心 2024年第9期117-126,共10页
针对传统稀疏贝叶斯算法中字典列之间较强的相互一致性导致的重构性能下降问题,提出了一种基于变分贝叶斯期望最大化的一致受限字典织物图像重构模型(CCD-VBEM)。考虑织物图像的真实应用场景,采用多层先验的稀疏贝叶斯学习(SBL)模型进... 针对传统稀疏贝叶斯算法中字典列之间较强的相互一致性导致的重构性能下降问题,提出了一种基于变分贝叶斯期望最大化的一致受限字典织物图像重构模型(CCD-VBEM)。考虑织物图像的真实应用场景,采用多层先验的稀疏贝叶斯学习(SBL)模型进行建模,并通过VBEM方法求解后验分布近似值,从而构建SBL-VBEM模型。由于SBL-VBEM模型的重构结果仍然受字典矩阵的相关性影响,因此通过减少字典列之间的相互一致性来改善重构结果。首先,通过S形函数的拓扑结构获得收缩因子;然后,在获取一致受限字典的每次迭代中,利用收缩因子缩小字典矩阵中最大非对角项的邻域间隔;最后,将获取的一致受限字典作为SBL-VBEM模型的输入,获得更有效的重构织物图像。对CCD-VBEM模型在阿里云天池数据集上进行验证,验证结果表明,在不同采样率(0.20~0.40)下,CCD-VBEM模型对织物图像的重构均获得最优性能。 展开更多
关键词 织物图像 重构 一致受限字典 变分贝叶斯期望最大化 收缩因子
在线阅读 下载PDF
基于cSVB算法的DME脉冲干扰抑制方法
14
作者 李冬霞 王佳妮 +2 位作者 彭祥清 刘海涛 王磊 《系统工程与电子技术》 EI CSCD 北大核心 2024年第8期2877-2885,共9页
针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cS... 针对测距仪(distance measure equipment,DME)信号严重干扰L频段数字航空通信系统(L-band digital aviation communication system,L-DACS)前向链路接收机的问题,提出基于相关稀疏变分贝叶斯(correlated sparse variational Bayesian,cSVB)算法的DME脉冲干扰抑制方法。所提方法利用L-DACS系统正交频分复用(orthogonal frequency division multiplexing,OFDM)接收机的空子载波信息构建接收信号的压缩感知方程;然后,根据cSVB算法进行三层次贝叶斯信号建模,最后选择了两种变体算法重构DME干扰信号,并将其从时域接收信号中去除。理论分析与仿真结果表明,所提出的干扰抑制方法可以充分利用信号先验信息,进一步降低DME干扰信号估计的归一化均方误差,有效改善L-DACS系统的误码性能,提高传输可靠性。 展开更多
关键词 L波段数字航空通信系统 测距仪 块稀疏贝叶斯 变分贝叶斯推理
在线阅读 下载PDF
非平稳异常噪声条件下的扩展目标跟踪方法
15
作者 陈辉 张欣雨 +2 位作者 连峰 韩崇昭 张光华 《电子与信息学报》 北大核心 2025年第3期803-813,共11页
针对非平稳异常噪声环境下扩展目标跟踪问题,该文提出一种基于高斯-学生t混合(GSTM)扩展目标跟踪方法。首先,将过程噪声和量测噪声建模为GSTM分布,以表征非平稳厚尾噪声,并通过引入伯努利随机变量,将目标的运动状态和量测似然函数建模... 针对非平稳异常噪声环境下扩展目标跟踪问题,该文提出一种基于高斯-学生t混合(GSTM)扩展目标跟踪方法。首先,将过程噪声和量测噪声建模为GSTM分布,以表征非平稳厚尾噪声,并通过引入伯努利随机变量,将目标的运动状态和量测似然函数建模为分层高斯形式。其次,在随机矩阵(RMM)滤波框架下,使用变分贝叶斯方法详细推导了非平稳厚尾噪声下的GSTM扩展目标跟踪算法。该算法通过建模高斯噪声与厚尾噪声之间的非平稳过程,精确表征噪声特性,从而在非平稳异常噪声环境下稳健捕捉扩展目标的质心位置和轮廓形态。最后,构建非平稳异常噪声环境下的扩展目标跟踪仿真实验,并通过高斯-瓦瑟斯坦距离对实验结果进行效果评估,验证了所提出算法的合理性。此外,真实场景实验结果进一步证明了该算法在实际应用中的有效性和鲁棒性。 展开更多
关键词 扩展目标跟踪 随机矩阵 高斯-学生t混合分布 变分贝叶斯方法
在线阅读 下载PDF
偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法
16
作者 邓洪高 余润华 +2 位作者 纪元法 吴孙勇 孙少帅 《电子与信息学报》 北大核心 2025年第1期156-166,共11页
针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏... 针对存在突变测量偏差和未知时变量测噪声场景下的目标跟踪问题,该文提出一种偏差未补偿自适应边缘化容积卡尔曼滤波跟踪方法。首先通过建立差分量测方程来消除恒定的测量偏差,同时构建满足beta-Bernoulli分布的指示变量识别突变测量偏差,将相邻时刻目标状态扩维以满足实时滤波需求,利用逆Wishart分布建模未知量测噪声协方差矩阵,从而建立目标状态、指示变量、噪声协方差矩阵的联合分布,并通过变分贝叶斯推断来求解各个参数的近似后验。为减小滤波负担,对扩维后的状态向量进行边缘化处理,结合容积卡尔曼滤波方法实现边缘化容积卡尔曼滤波跟踪。仿真实验结果表明,所提方法能够同时处理突变测量偏差和未知时变量测噪声,从而对目标进行有效跟踪。 展开更多
关键词 突变测量偏差 Beta-Bernoulli分布 逆Wishart分布 变分贝叶斯推断 边缘化容积卡尔曼滤波
在线阅读 下载PDF
水声单载波通信中的块稀疏均衡器
17
作者 佟文涛 葛威 +2 位作者 殷敬伟 韩笑 林雨佳 《声学学报》 北大核心 2025年第2期511-524,共14页
水声通信中基于块处理的均衡器复杂度低但性能受限,为此提出了一种应用于水声单载波通信的块稀疏均衡器,进一步考虑了均衡器抽头的稀疏特性,在时不变假设下利用变分贝叶斯推断对稀疏均衡向量完成迭代估计。之后,为提高系统的稳健性,将... 水声通信中基于块处理的均衡器复杂度低但性能受限,为此提出了一种应用于水声单载波通信的块稀疏均衡器,进一步考虑了均衡器抽头的稀疏特性,在时不变假设下利用变分贝叶斯推断对稀疏均衡向量完成迭代估计。之后,为提高系统的稳健性,将模型推广至水声时变场景,推导了基于基扩展模型的块稀疏均衡器,将时变均衡矩阵的估计问题转化成时不变稀疏基系数向量的恢复问题,降低了求解难度。与经典的块均衡器相比,所提方法针对信道估计的逆问题,直接估计均衡系数向量,且进一步考虑了均衡器抽头的稀疏性。仿真与试验结果证明了该方法在稀疏信道下的有效性,以及在时变信道下的鲁棒性。 展开更多
关键词 水声通信 块稀疏均衡器 变分贝叶斯推断 基扩展模型
在线阅读 下载PDF
基于自然梯度的非线性变分贝叶斯滤波算法
18
作者 胡玉梅 潘泉 +2 位作者 邓豹 郭振 陈立峰 《自动化学报》 北大核心 2025年第2期427-444,共18页
在统计流形空间中,从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler(KL)散度最小化问题,同时也可以转化为变分置信下界的最大化问题.为了提升非线性系统状态估计的精度,在高斯系... 在统计流形空间中,从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler(KL)散度最小化问题,同时也可以转化为变分置信下界的最大化问题.为了提升非线性系统状态估计的精度,在高斯系统假设条件下结合变分贝叶斯(Variational Bayes,VB)推断和Fisher信息矩阵推导出置信下界的自然梯度,并通过分析其信息几何意义,阐述在统计流形空间中置信下界沿其方向不断迭代增大,实现变分分布与后验分布的“紧密”近似;在此基础上,以状态估计及其误差协方差作为变分超参数,结合最优估计理论给出一种基于自然梯度的非线性变分贝叶斯滤波算法;最后,通过天基光学传感器量测条件下近地轨道卫星跟踪定轨和纯角度被动传感器量测条件下运动目标跟踪仿真实验验证,与对比算法相比,所提算法具有更高的精度. 展开更多
关键词 非线性滤波 信息几何 变分贝叶斯推断 自然梯度 Fisher信息矩阵
在线阅读 下载PDF
基于VbMoICA的机械故障盲源分离研究 被引量:1
19
作者 岳秀廷 李志农 陈金刚 《机械设计与制造》 北大核心 2012年第3期242-244,共3页
用独立分量分析(ICA)分解和表示数据时,假设整个数据分布完全可以用一个坐标系来描述。然而,当观测数据是由许多自相似的、非高斯的流形组成时,则硬是用一个单独的、全局的表示是不合适的,这样会产生一个次优的表示。针对ICA在盲源分离... 用独立分量分析(ICA)分解和表示数据时,假设整个数据分布完全可以用一个坐标系来描述。然而,当观测数据是由许多自相似的、非高斯的流形组成时,则硬是用一个单独的、全局的表示是不合适的,这样会产生一个次优的表示。针对ICA在盲源分离中的不足,在变分贝叶斯理论的基础上提出了一种基于变分贝叶斯混合独立分量分析的机械故障源盲分离方法。该方法是考虑到源信号来自于多个坐标系,然后在多个坐标系下建立独立分量分析混合模型对观测信号进行学习分离。实验结果表明,本文提出的方法是非常有效的。 展开更多
关键词 盲源分离 变分贝叶斯理论 独立分量分析混合模型 变分贝叶斯混合独立分量分析 故障诊断
在线阅读 下载PDF
Variational Bayesian Tensor Quantile Regression
20
作者 Yunzhi Jin Yanqing Zhang 《Acta Mathematica Sinica,English Series》 2025年第2期733-756,共24页
Quantile regression is widely used in variable relationship research for statistical learning.Traditional quantile regression model is based on vector-valued covariates and can be efficiently estimated via traditional... Quantile regression is widely used in variable relationship research for statistical learning.Traditional quantile regression model is based on vector-valued covariates and can be efficiently estimated via traditional estimation methods.However,many modern applications involve tensor data with the intrinsic tensor structure.Traditional quantile regression can not deal with tensor regression issues well.To this end,we consider a tensor quantile regression with tensor-valued covariates and develop a novel variational Bayesian estimation approach to make estimation and prediction based on the asymmetric Laplace model and the CANDECOMP/PARAFAC decomposition of tensor coefficients.To incorporate the sparsity of tensor coefficients,we consider the multiway shrinkage priors for marginal factor vectors of tensor coefficients.The key idea of the proposed method is to efficiently combine the prior structural information of tensor and utilize the matricization of tensor decomposition to simplify the complexity of tensor coefficient estimation.The coordinate ascent algorithm is employed to optimize variational lower bound.Simulation studies and a real example show the numerical performances of the proposed method. 展开更多
关键词 Asymmetric Laplace model CANDECOMP PARAFAC decomposition matricization tensor quantile regression variational bayesian
原文传递
上一页 1 2 16 下一页 到第
使用帮助 返回顶部