期刊文献+
共找到4,041篇文章
< 1 2 203 >
每页显示 20 50 100
Review:Challenges and Barriers Regarding Electric Vehicles in Modern India with Grid Optimization
1
作者 Venkatraman Ethirajan S.P.Mangaiyarkarasi 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期25-48,共24页
The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e... The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles. 展开更多
关键词 electric vehicles vehicle to grid hybrid vehicles renewable energy
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
2
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted Ensemble Voting Unmanned vehicles Security Strategies
在线阅读 下载PDF
Synergizing Urban Mobility: The Interplay between Autonomous Vehicles and Autonomous Parking Spaces for Sustainable Development
3
作者 Emmanuel Anu Thompson Evans Tetteh Akoto +2 位作者 Herman Benjamin Atuobi Pan Lu Cephas Kenneth Abbew 《Journal of Transportation Technologies》 2025年第1期50-59,共10页
Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, curr... Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities. 展开更多
关键词 Autonomous vehicles Autonomous Parking Spaces SUSTAINABILITY Smart Infrastructure
在线阅读 下载PDF
Optimization of an Artificial Intelligence Database and Camera Installation for Recognition of Risky Passenger Behavior in Railway Vehicles
4
作者 Min-kyeong Kim Yeong Geol Lee +3 位作者 Won-Hee Park Su-hwan Yun Tae-Soon Kwon Duckhee Lee 《Computers, Materials & Continua》 SCIE EI 2025年第1期1277-1293,共17页
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in... Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly. 展开更多
关键词 AI railway vehicle risk factor smart detection AI training data
在线阅读 下载PDF
Anomaly Detection of Controllable Electric Vehicles through Node Equation against Aggregation Attack
5
作者 Jing Guo Ziying Wang +1 位作者 Yajuan Guo Haitao Jiang 《Computers, Materials & Continua》 SCIE EI 2025年第1期427-442,共16页
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg... The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure. 展开更多
关键词 Anomaly detection electric vehicle aggregation attack deep cross-network
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
6
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
7
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery Electric vehicles (BEVS) GASOLINE DIESEL Hybrid Electric vehicles (HEVs) Plug-In Hybrid vehicles (PHEVs) Climate Change Carbon Dioxide (CO2) Emissions
在线阅读 下载PDF
A Survey on an Emerging Safety Challenge for Autonomous Vehicles:Safety of the Intended Functionality 被引量:2
8
作者 Hong Wang Wenbo Shao +3 位作者 Chen Sun Kai Yang Dongpu Cao Jun Li 《Engineering》 SCIE EI CAS CSCD 2024年第2期17-34,共18页
As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(S... As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges. 展开更多
关键词 Safety of the intended functionality Autonomous vehicles Artificial intelligence UNCERTAINTY Verification Validation
在线阅读 下载PDF
A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles 被引量:2
9
作者 Naiyu Wang Wenti Yang +4 位作者 Xiaodong Wang Longfei Wu Zhitao Guan Xiaojiang Du Mohsen Guizani 《Digital Communications and Networks》 SCIE CSCD 2024年第1期126-134,共9页
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be... The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model. 展开更多
关键词 Federated learning Blockchain Privacy-preservation Homomorphic encryption Internetof vehicles
在线阅读 下载PDF
Distributed Platooning Control of Automated Vehicles Subject to Replay Attacks Based on Proportional Integral Observers 被引量:1
10
作者 Meiling Xie Derui Ding +3 位作者 Xiaohua Ge Qing-Long Han Hongli Dong Yan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1954-1966,共13页
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu... Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy. 展开更多
关键词 Automated vehicles platooning control proportional-integral-observers(PIOs) replay attacks TIME-DELAYS
在线阅读 下载PDF
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
11
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 Knowledge sharing Internet of vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
在线阅读 下载PDF
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles 被引量:1
12
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
在线阅读 下载PDF
A credibility-aware swarm-federated deep learning framework in internet of vehicles 被引量:1
13
作者 Zhe Wang Xinhang Li +2 位作者 Tianhao Wu Chen Xu Lin Zhang 《Digital Communications and Networks》 SCIE CSCD 2024年第1期150-157,共8页
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead... Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations. 展开更多
关键词 Swarm learning Federated deep learning Internet of vehicles PRIVACY EFFICIENCY
在线阅读 下载PDF
Computation Offloading in Edge Computing for Internet of Vehicles via Game Theory 被引量:1
14
作者 Jianhua Liu Jincheng Wei +3 位作者 Rongxin Luo Guilin Yuan Jiajia Liu Xiaoguang Tu 《Computers, Materials & Continua》 SCIE EI 2024年第10期1337-1361,共25页
With the rapid advancement of Internet of Vehicles(IoV)technology,the demands for real-time navigation,advanced driver-assistance systems(ADAS),vehicle-to-vehicle(V2V)and vehicle-to-infrastructure(V2I)communications,a... With the rapid advancement of Internet of Vehicles(IoV)technology,the demands for real-time navigation,advanced driver-assistance systems(ADAS),vehicle-to-vehicle(V2V)and vehicle-to-infrastructure(V2I)communications,and multimedia entertainment systems have made in-vehicle applications increasingly computingintensive and delay-sensitive.These applications require significant computing resources,which can overwhelm the limited computing capabilities of vehicle terminals despite advancements in computing hardware due to the complexity of tasks,energy consumption,and cost constraints.To address this issue in IoV-based edge computing,particularly in scenarios where available computing resources in vehicles are scarce,a multi-master and multi-slave double-layer game model is proposed,which is based on task offloading and pricing strategies.The establishment of Nash equilibrium of the game is proven,and a distributed artificial bee colonies algorithm is employed to achieve game equilibrium.Our proposed solution addresses these bottlenecks by leveraging a game-theoretic approach for task offloading and resource allocation in mobile edge computing(MEC)-enabled IoV environments.Simulation results demonstrate that the proposed scheme outperforms existing solutions in terms of convergence speed and system utility.Specifically,the total revenue achieved by our scheme surpasses other algorithms by at least 8.98%. 展开更多
关键词 Edge computing internet of vehicles resource allocation game theory artificial bee colony algorithm
在线阅读 下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles 被引量:1
15
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor Stochastic sampling Dynamic dampers Sampled-data control Multi-objective control
在线阅读 下载PDF
Investigation into Impedance Measurements for Rapid Capacity Estimation of Lithium-ion Batteries in Electric Vehicles 被引量:1
16
作者 Xiaoyu Zhao Zuolu Wang +1 位作者 Eric Li Haiyan Miao 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第1期21-31,共11页
With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity e... With the dramatic increase in electric vehicles(EVs)globally,the demand for lithium-ion batteries has grown dramatically,resulting in many batteries being retired in the future.Developing a rapid and robust capacity estimation method is a challenging work to recognize the battery aging level on service and provide regroup strategy of the retied batteries in secondary use.There are still limitations on the current rapid battery capacity estimation methods,such as direct current internal resistance(DCIR)and electrochemical impedance spectroscopy(EIS),in terms of efficiency and robustness.To address the challenges,this paper proposes an improved version of DCIR,named pulse impedance technique(PIT),for rapid battery capacity estimation with more robustness.First,PIT is carried out based on the transient current excitation and dynamic voltage measurement using the high sampling frequency,in which the coherence analysis is used to guide the selection of a reliable frequency band.The battery impedance can be extracted in a wide range of frequency bands compared to the traditional DCIR method,which obtains more information on the battery capacity evaluation.Second,various statistical variables are used to extract aging features,and Pearson correlation analysis is applied to determine the highly correlated features.Then a linear regression model is developed to map the relationship between extracted features and battery capacity.To validate the performance of the proposed method,the experimental system is designed to conduct comparative studies between PIT and EIS based on the two 18650 batteries connected in series.The results reveal that the proposed PIT can provide comparative indicators to EIS,which contributes higher estimation accuracy of the proposed PIT method than EIS technology with lower time and cost. 展开更多
关键词 electric vehicles electrochemical impedance spectroscopy lithium-ion battery pulse impedance technique rapid capacity estimation
在线阅读 下载PDF
Design and Develop Function for Research Based Application of Intelligent Internet-of-Vehicles Model Based on Fog Computing
17
作者 Abduladheem Fadhil Khudhur Ayca Kurnaz Türkben Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第12期3805-3824,共20页
The fast growth in Internet-of-Vehicles(IoV)applications is rendering energy efficiency management of vehicular networks a highly important challenge.Most of the existing models are failing to handle the demand for en... The fast growth in Internet-of-Vehicles(IoV)applications is rendering energy efficiency management of vehicular networks a highly important challenge.Most of the existing models are failing to handle the demand for energy conservation in large-scale heterogeneous environments.Based on Large Energy-Aware Fog(LEAF)computing,this paper proposes a new model to overcome energy-inefficient vehicular networks by simulating large-scale network scenarios.The main inspiration for this work is the ever-growing demand for energy efficiency in IoV-most particularly with the volume of generated data and connected devices.The proposed LEAF model enables researchers to perform simulations of thousands of streaming applications over distributed and heterogeneous infrastructures.Among the possible reasons is that it provides a realistic simulation environment in which compute nodes can dynamically join and leave,while different kinds of networking protocols-wired and wireless-can also be employed.The novelty of this work is threefold:for the first time,the LEAF model integrates online decision-making algorithms for energy-aware task placement and routing strategies that leverage power usage traces with efficiency optimization in mind.Unlike existing fog computing simulators,data flows and power consumption are modeled as parameterizable mathematical equations in LEAF to ensure scalability and ease of analysis across a wide range of devices and applications.The results of evaluation show that LEAF can cover up to 98.75%of the distance,with devices ranging between 1 and 1000,showing significant energy-saving potential through A wide-area network(WAN)usage reduction.These findings indicate great promise for fog computing in the future-in particular,models like LEAF for planning energy-efficient IoV infrastructures. 展开更多
关键词 Fog computing internet of vehicles LEAF segmentation DISTANCE power consumption CLOUD vehicle nodes wireless
在线阅读 下载PDF
Research on X-by-Wire Chassis Technology for Intelligent Driving of New Energy Vehicles 被引量:1
18
作者 Honghong Xiao 《Journal of Electronic Research and Application》 2024年第2期146-150,共5页
As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology beco... As China’s economy develops,new energy technologies and intelligent driving have become a trend in the automobile industry.The development of new energy vehicles has accelerated,with X-by-wire chassis technology becoming the core technology for intelligent driving.This technology includes steer-,brake-,shift-,and throttle-by-wire systems.It is not only the key technology for new energy vehicles but also an important support for promoting their sustainable development.This article presents an in-depth study on X-by-wire chassis technology in new energy vehicles and its basic working principle. 展开更多
关键词 New energy vehicles Intelligent driving X-by-wire chassis technology
在线阅读 下载PDF
Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC
19
作者 Hao Zheng Yinong Li +1 位作者 Ling Zheng Ehsan Hashemi 《Engineering》 SCIE EI CAS CSCD 2024年第2期146-159,共14页
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ... Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties. 展开更多
关键词 Automated vehicles Automated driving Motion planning Motion control Tube MPC ZONOTOPE
在线阅读 下载PDF
Stability-Considered Lane Keeping Control of Commercial Vehicles Based on Improved APF Algorithm
20
作者 Bin Tang Zhengyi Yang +3 位作者 Haobin Jiang Ziyan Lin Zhanxiang Xu Zitian Hu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期114-129,共16页
Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase... Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving. 展开更多
关键词 Lane keeping control Commercial vehicles Lateral stability Artificial potential field AIWPSO
在线阅读 下载PDF
上一页 1 2 203 下一页 到第
使用帮助 返回顶部