In most agricultural areas in the semi-arid region of the southern United States, wheat (Triticum aestivum L.) production is a primary economic activity. This region is drought-prone and projected to have a drier clim...In most agricultural areas in the semi-arid region of the southern United States, wheat (Triticum aestivum L.) production is a primary economic activity. This region is drought-prone and projected to have a drier climate in the future. Predicting the yield loss due to an anticipated drought is crucial for wheat growers. A reliable way for predicting the drought-induced yield loss is to use a plant physiology-based drought index, such as Agricultural Reference Index for Drought (ARID). Since different wheat cultivars exhibit varying levels of sensitivity to water stress, the impact of drought could be different on the cultivars belonging to different drought sensitivity groups. The objective of this study was to develop the cultivar drought sensitivity (CDS) group-specific, ARID-based models for predicting the drought-induced yield loss of winter wheat in the Llano Estacado region in the southern United States by accounting for the phenological phase-specific sensitivity to drought. For the study, the historical (1947-2021) winter wheat grain yield and daily weather data of two locations in the region (Bushland, TX and Clovis, NM) were used. The logical values of the drought sensitivity parameters of the yield models, especially for the moderately-sensitive and highly-sensitive CDS groups, indicated that the yield models reflected the phenomenon of water stress decreasing the winter wheat yields in this region satisfactorily. The reasonable values of the Nash-Sutcliffe Index (0.65 and 0.72), the Willmott Index (0.88 and 0.92), and the percentage error (23 and 22) for the moderately-sensitive and highly-sensitive CDS groups, respectively, indicated that the yield models for these groups performed reasonably well. These models could be useful for predicting the drought-induced yield losses and scheduling irrigation allocation based on the phenological phase-specific drought sensitivity as influenced by cultivar genotype.展开更多
Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date c...Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date can mitigate competition in densely planted populations.However,the underlying mechanism by which it confers resistance to wheat lodging remains elusive.In this study,Zimai 28(lodging-sensitive variety) and Shannong 28(lodging-resistant variety) were used with three sowing treatments on October 22(S1),October 28(S2),and November 3(S3).The sowing rate was adjusted to ensure adequate population size and consistency in the overwintering populations across sowing dates(300 plant m^(-2)for S1,375 plant m^(-2)for S2,and 525 plant m^(-2)for S3),The lodging resistance in winter wheat was increased by delayed sowing and increased sowing rate,which led to a reduction in tiller numbers and fostered primary stem development.A reduction in the overwinter cumulative temperature from 500 to 450℃,coupled with an elevation in sowing rates from 300 to 375 plant m^(-2)(transition from S1 to S2),corresponded with a notable increase in structural carbohydrates(lignin,cellulose,hemicellulose,and pectin) by 175.07 mg g^(-1).Additionally,there was a moderate increase in non-structural carbohydrates,including soluble sugars and starch,by 15.54 mg g^(-1).Delayed sowing and increased sowing rate elevated the precursor contents of lignin synthesis.Enhanced metabolic activity of related pathways ultimately increased dimer/trimer content.In summary,this study highlights the pivotal role of lignin metabolites and cross-linked structures in determining the stem stiffness breaking strength.展开更多
The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields ...The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.展开更多
Wheat-maize(WM)and wheat-soybean(WS)double-cropping rotation systems are predominant in the North China Plain,with implications for national agricultural output and sustainability.As rotation systems exert legacy effe...Wheat-maize(WM)and wheat-soybean(WS)double-cropping rotation systems are predominant in the North China Plain,with implications for national agricultural output and sustainability.As rotation systems exert legacy effects on soil health and crop productivity,the role of crop rotation in shaping the root-associated microbiome of the succeeding crops has emerged as a pivotal aspect of crop management research.Here,the effects of the preceding two cycles of WM and WS rotations on the recruitment and filtering of wheat root-associated bacterial communities across wheat developmental stages were investigated.Our results revealed that bacterial community diversity and composition were primarily influenced by compartment and developmental stage,while the preceding rotation systems had a slight but significant effect on wheat root-associated bacterial communities.The co-occurrence networks under WM were more complex in the wheat rhizosphere and rhizoplane,with the operational taxonomic units(OTUs)related to cellulolysis showing greater connectivity.The co-occurrence networks under WS were simple but stable in the rhizosphere and complex in the rhizoplane and endosphere,with the OTUs related to ureolysis and nitrogen fixation showing greater connectivity.While both stochastic and deterministic processes contributed to the assembly of wheat root-associated bacterial communities,the contributions of deterministic processes under WS were 19.4-38.5%higher than those under the WM rotation across the root-associated compartments,indicating the substantial impact of a soybean legacy effect on wheat root selection of microbes.Plant growthpromoting rhizobacteria with the potential to fix nitrogen,produce indole-3-acetic acid,and inhibit diseases such as Betaproteobacteriales,Azospirillales and Dyella sp.,were identified within the OTUs that were consistently enriched across all the wheat root-associated compartments and developmental stages,which were also important predictors of wheat yield.This study elucidates the role of crop rotation in modulating the dynamics of crop root-associated bacterial communities,and underscores the potential of targeted microbiome manipulation for optimizing wheat production and enhancing soil health.展开更多
Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two ...Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.展开更多
In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified d...In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified durum wheat treated with ozone). Two groups were treated with ozone gas at 3 ppm concentration for 1 hour. Groups were then placed in air-tight glass jars and stored for 6 months at variable temperatures between 24.7°C to 34.8°C. Microbiological (total count bacteria, yeast/molds and coliform) and physical properties (moisture, color and ash) evaluated. Ozone application statistically caused a significant reduction in the numbers of bacteria, yeast, molds and coliforms. Ozone application, washing process and storage temperature are the major factors affecting the microbial counts. No significant differences were determined in moisture and ash contents of samples after ozone treatment. The color measurement results showed that color values of wheat samples were affected by ozone treatment, storage and washing.展开更多
A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were d...A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were detected in 31 Yunnan, 15 Tibetan and 6 Xinjiang wheat accessions with an average of PIC values 0.2764, 0.3082, and 0.1944, respectively. Substantial differences in allelic polymorphisms were detected by SSR markers in all the 21 chromosomes, the 7 homoeologous groups, and the three genomes (A, B, and D) in Yunnan, Tibetan, and Xinjiang wheat. The highest and lowest allelic polymorphisms in all the 21 chromosomes were observed in 3B and 1D chromosomes, respectively. The lowest and highest allelic polymorphisms among the seven homoeologous groups was observed in 6 and 3 homoeologous groups, respectively. Among the three genomes, B genome showed the highest, A the intermediate, and D the lowest allelic polymorphism. The genetic distance (GD) indexes within Yunnan, Tibetan, and Xinjiang wheat, and between different wheat types were calculated. The GD value was found to be much higher within Yunnan and Tibetan wheat than within Xinjiang wheat, but the GD value between Yunnan and Tibetan wheat was lower than those between Yunnan and Xinjiang wheat, and between Tibetan and Xinjiang wheat. The cluster analysis indicated a closer relationship between Yunnan and Tibetan wheat than that between Yunnan and Xinjiang wheat or between Tibetan and Xinjiang wheat.展开更多
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist...The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.展开更多
Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing...Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing population.Here,45,298 single-nucleotide polymorphisms(SNPs)from 55K chip arrays were used to genotype a panel of 768 wheat cultivars,and a total of 154 quantitative trait loci(QTLs)were detected for eight traits under three environments by genome-wide association study(GWAS).Three QTLs(qMn-3B.1,qFe-3B.4,and qSe-3B.1/qFe-3B.6)detected repeatedly under different environments or traits were subjected to subsequent analyses based on linkage disequilibrium decay and the P-values of significant SNPs.Significant SNPs in the three QTL regions formed six haplotypes for qMn-3B.1,three haplotypes for qFe-3B.4,and three haplotypes for qSe-3B.1/qFe-3B.6.Phenotypic analysis revealed significant differences among haplotypes.These results indicated that the concentrations of several nutrient elements have been modified during the domestication of landraces to modern wheat.Based on the QTL regions,we identified 15 high-confidence genes,eight of which were stably expressed in different tissues and/or developmental stages.TraesCS3B02G046100 in qMn-3B.1 and TraesCS3B02G199500 in qSe-3B.1/qFe-3B.6 were both inferred to interact with metal ions according to the Gene Ontology(GO)analysis.TraesCS3B02G199000,which belongs to qSe-3B.1/qFe-3B.6,was determined to be a member of the WRKY gene family.Overall,this study provides several reliable QTLs that may significantly affect the concentrations of nutrient elements in wheat grain,and this information will facilitate the breeding of wheat cultivars with improved grain properties.展开更多
Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predi...Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.展开更多
Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introduc...Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introducing mutagenesis materials.Ethyl methane sulfonate(EMS)is an alkylating agent that can effectively introduce genetic variations in a wide variety of plant species.In this study,we created a million-scale EMS population(MEP)that started with the Chinese wheat cultivars‘Luyan 128’,‘Jimai 38’,‘Jimai 44’,and‘Shannong 30’.In the M1 generation,the MEP had numerous phenotypical variations,such as>3,000 chlorophyll-deficient mutants,2,519 compact spikes,and 1,692 male sterile spikes.There were also rare mutations,including 30 independent tillers each with double heads.Some M1 variations of chlorophyll-deficiency and compact spikes were inheritable,appearing in the M2 or M3 generations.To advance the entire MEP to higher generations,we adopted a single-seed descendent(SSD)approach.All other seed composites of M2 were used to screen other agronomically important traits,such as the tolerance to herbicide quizalofop-P-methyl.The MEP is available for collaborative projects,and provides a valuable toolbox for wheat genetics and breeding for sustainable agriculture.展开更多
Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa...Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.展开更多
Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a...Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat.展开更多
Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmenta...Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.展开更多
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components...Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.展开更多
Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food syst...Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food systems.Herein,we proposed a silver nanoparticles(AgNPs)/metal-organic framework(MOF)substrate-based surface-enhanced Raman scattering(SERS)sensor for the high-sensitive on-site detection of wheat gluten.The detection occurred on the newly in-situ synthesized AgNPs/MOF-modified SERS substrate,providing an enhancement factor(EF)of 1.89×10^(5).Benefitting from the signal amplification function of AgNPs/MOF and the superiority of SERS,this sensor represented high sensitivity performance and a wide detection range from 1×10^(-15)mol/L to 2×10^(-6)mol/L with a detection limit of 1.16×10^(-16)mol/L,which allowed monitoring the trace of wheat gluten in complex food system without matrix interference.This reliable sandwich SERS sensor may provide a promising platform for high-sensitive,accurate,and on-site detection of allergens in the field of food safety.展开更多
The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass...The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut...Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.展开更多
文摘In most agricultural areas in the semi-arid region of the southern United States, wheat (Triticum aestivum L.) production is a primary economic activity. This region is drought-prone and projected to have a drier climate in the future. Predicting the yield loss due to an anticipated drought is crucial for wheat growers. A reliable way for predicting the drought-induced yield loss is to use a plant physiology-based drought index, such as Agricultural Reference Index for Drought (ARID). Since different wheat cultivars exhibit varying levels of sensitivity to water stress, the impact of drought could be different on the cultivars belonging to different drought sensitivity groups. The objective of this study was to develop the cultivar drought sensitivity (CDS) group-specific, ARID-based models for predicting the drought-induced yield loss of winter wheat in the Llano Estacado region in the southern United States by accounting for the phenological phase-specific sensitivity to drought. For the study, the historical (1947-2021) winter wheat grain yield and daily weather data of two locations in the region (Bushland, TX and Clovis, NM) were used. The logical values of the drought sensitivity parameters of the yield models, especially for the moderately-sensitive and highly-sensitive CDS groups, indicated that the yield models reflected the phenomenon of water stress decreasing the winter wheat yields in this region satisfactorily. The reasonable values of the Nash-Sutcliffe Index (0.65 and 0.72), the Willmott Index (0.88 and 0.92), and the percentage error (23 and 22) for the moderately-sensitive and highly-sensitive CDS groups, respectively, indicated that the yield models for these groups performed reasonably well. These models could be useful for predicting the drought-induced yield losses and scheduling irrigation allocation based on the phenological phase-specific drought sensitivity as influenced by cultivar genotype.
基金supported by the National Natural Science Foundation of China(32172117,32101834)the Shandong Province Agricultural Major Technology Collaborative Promotion Plan Project(SDNYXTTG-2023-33)+1 种基金Postdoctoral Science Foundation of China(2022M711968)the Natural Science Foundation of Shandong Province(ZR2020QC106).
文摘Population size plays a crucial role in determining wheat yields.Altered carbohydrate accumulation resulting from increased competition between populations and individuals leads to poor-quality stems.The sowing date can mitigate competition in densely planted populations.However,the underlying mechanism by which it confers resistance to wheat lodging remains elusive.In this study,Zimai 28(lodging-sensitive variety) and Shannong 28(lodging-resistant variety) were used with three sowing treatments on October 22(S1),October 28(S2),and November 3(S3).The sowing rate was adjusted to ensure adequate population size and consistency in the overwintering populations across sowing dates(300 plant m^(-2)for S1,375 plant m^(-2)for S2,and 525 plant m^(-2)for S3),The lodging resistance in winter wheat was increased by delayed sowing and increased sowing rate,which led to a reduction in tiller numbers and fostered primary stem development.A reduction in the overwinter cumulative temperature from 500 to 450℃,coupled with an elevation in sowing rates from 300 to 375 plant m^(-2)(transition from S1 to S2),corresponded with a notable increase in structural carbohydrates(lignin,cellulose,hemicellulose,and pectin) by 175.07 mg g^(-1).Additionally,there was a moderate increase in non-structural carbohydrates,including soluble sugars and starch,by 15.54 mg g^(-1).Delayed sowing and increased sowing rate elevated the precursor contents of lignin synthesis.Enhanced metabolic activity of related pathways ultimately increased dimer/trimer content.In summary,this study highlights the pivotal role of lignin metabolites and cross-linked structures in determining the stem stiffness breaking strength.
基金supported by the Key Research and Development Program of Shaanxi,China(2021NY-083)the National Natural Science Foundation of China(31871567)。
文摘The trade-off between yield and environmental effects caused by nitrogen fertilizer application is an important issue in wheat production.A reduction in fertile florets is one of the main reasons for the lower yields under low nitrogen application rates.Brassinosteroids(BRs)have been found to play a role in nitrogen-induced rice spikelet degeneration.However,whether BRs play a role in wheat floret development and the mechanisms involved are not clear.Therefore,a nitrogen gradient experiment and exogenous spraying experiment were conducted to investigate the role and mechanism of BRs in wheat floret development under low nitrogen stress.The results showed that as the nitrogen application decreased,the endogenous BRs content of the spikes decreased,photosynthesis weakened,and total carbon,soluble sugar and starch in the spikes decreased,leading to a reduction in the number of fertile florets.Under low nitrogen stress,exogenous spraying of 24-epibrassinolide promoted photosynthesis,and stimulated stem fructan hydrolysis and the utilization and storage of sucrose in spikes,which directed more carbohydrates to the spikes and increased the number of fertile florets.In conclusion,BRs mediate the effects of nitrogen fertilizer on wheat floret development,and under low nitrogen stress,foliar spraying of 24-epibrassinolide promotes the flow of carbohydrates from the stem to the spikes,alleviating wheat floret degeneration.
基金the National Natural Science Foundation of China(42107339)the China Agriculture Research System(CARS-04)。
文摘Wheat-maize(WM)and wheat-soybean(WS)double-cropping rotation systems are predominant in the North China Plain,with implications for national agricultural output and sustainability.As rotation systems exert legacy effects on soil health and crop productivity,the role of crop rotation in shaping the root-associated microbiome of the succeeding crops has emerged as a pivotal aspect of crop management research.Here,the effects of the preceding two cycles of WM and WS rotations on the recruitment and filtering of wheat root-associated bacterial communities across wheat developmental stages were investigated.Our results revealed that bacterial community diversity and composition were primarily influenced by compartment and developmental stage,while the preceding rotation systems had a slight but significant effect on wheat root-associated bacterial communities.The co-occurrence networks under WM were more complex in the wheat rhizosphere and rhizoplane,with the operational taxonomic units(OTUs)related to cellulolysis showing greater connectivity.The co-occurrence networks under WS were simple but stable in the rhizosphere and complex in the rhizoplane and endosphere,with the OTUs related to ureolysis and nitrogen fixation showing greater connectivity.While both stochastic and deterministic processes contributed to the assembly of wheat root-associated bacterial communities,the contributions of deterministic processes under WS were 19.4-38.5%higher than those under the WM rotation across the root-associated compartments,indicating the substantial impact of a soybean legacy effect on wheat root selection of microbes.Plant growthpromoting rhizobacteria with the potential to fix nitrogen,produce indole-3-acetic acid,and inhibit diseases such as Betaproteobacteriales,Azospirillales and Dyella sp.,were identified within the OTUs that were consistently enriched across all the wheat root-associated compartments and developmental stages,which were also important predictors of wheat yield.This study elucidates the role of crop rotation in modulating the dynamics of crop root-associated bacterial communities,and underscores the potential of targeted microbiome manipulation for optimizing wheat production and enhancing soil health.
基金supported by National Key R&D Program of China(2022YFD2000100)National Natural Science Foundation of China(42401400)Zhejiang Provincial Key Research and Development Program(2023C02018).
文摘Yellow rust(Puccinia striiformis f.sp.Tritici,YR)and fusarium head blight(Fusarium graminearum,FHB)are the two main diseases affecting wheat in the main grain-producing areas of East China,which is common for the two diseases to appear simultaneously in some main production areas.It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space,conduct detailed disease severity monitoring,and scientific control.Four images on different dates were acquired from Sentinel-2,Landsat-8,and Gaofen-1 during the critical period of winter wheat,and 22 remote sensing features that characterize the wheat growth status were then calculated.Meanwhile,6 meteorological parameters that reflect the wheat phenological information were also obtained by combining the site meteorological data and spatial interpolation technology.Then,the principal components(PCs)of comprehensive remote sensing and meteorological features were extracted with principal component analysis(PCA).The PCs-based discrimination models were established to map YR and FHB damage using the random forest(RF)and backpropagation neural network(BPNN).The models’performance was verified based on the disease field truth data(57 plots during the filling period)and 5-fold cross-validation.The results revealed that the PCs obtained after PCA dimensionality reduction outperformed the initial features(IFs)from remote sensing and meteorology in discriminating between the two diseases.Compared to the IFs,the average area under the curve for both micro-average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,respectively,in the PCs-based BPNN models.Notably,the PCs-based BPNN discrimination model emerged as the most effective,achieving an overall accuracy of 83.9%.Our proposed discrimination model for wheat YR and FHB,coupled with multi-source remote sensing images and meteorological data,overcomes the limitations of a single-sensor and single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas.It performs well in revealing the damage spatial distribution of the two diseases at a regional scale,providing a basis for detailed disease severity monitoring,and scientific prevention and control.
文摘In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified durum wheat treated with ozone). Two groups were treated with ozone gas at 3 ppm concentration for 1 hour. Groups were then placed in air-tight glass jars and stored for 6 months at variable temperatures between 24.7°C to 34.8°C. Microbiological (total count bacteria, yeast/molds and coliform) and physical properties (moisture, color and ash) evaluated. Ozone application statistically caused a significant reduction in the numbers of bacteria, yeast, molds and coliforms. Ozone application, washing process and storage temperature are the major factors affecting the microbial counts. No significant differences were determined in moisture and ash contents of samples after ozone treatment. The color measurement results showed that color values of wheat samples were affected by ozone treatment, storage and washing.
基金Hi-Tech Research and Development (863) Program of China (No. 2006AA10Z1F6)Hi-Tech Re-search of Jiangsu Province (No.BG2005310)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (No.10418) (PCSIRT)Innovation Foundation of Young Science and Technology of Nanjing Agriculture UniversityIntroduction of Talents Foundation of Nanjing Agriculture University.
文摘A total of 206 SSR (Simple Sequence Repeats) primer pairs were used to detect genetic diversity in 52 accessions of three unique wheat varieties of western China. A total of 488, 472, and 308 allelic variants were detected in 31 Yunnan, 15 Tibetan and 6 Xinjiang wheat accessions with an average of PIC values 0.2764, 0.3082, and 0.1944, respectively. Substantial differences in allelic polymorphisms were detected by SSR markers in all the 21 chromosomes, the 7 homoeologous groups, and the three genomes (A, B, and D) in Yunnan, Tibetan, and Xinjiang wheat. The highest and lowest allelic polymorphisms in all the 21 chromosomes were observed in 3B and 1D chromosomes, respectively. The lowest and highest allelic polymorphisms among the seven homoeologous groups was observed in 6 and 3 homoeologous groups, respectively. Among the three genomes, B genome showed the highest, A the intermediate, and D the lowest allelic polymorphism. The genetic distance (GD) indexes within Yunnan, Tibetan, and Xinjiang wheat, and between different wheat types were calculated. The GD value was found to be much higher within Yunnan and Tibetan wheat than within Xinjiang wheat, but the GD value between Yunnan and Tibetan wheat was lower than those between Yunnan and Xinjiang wheat, and between Tibetan and Xinjiang wheat. The cluster analysis indicated a closer relationship between Yunnan and Tibetan wheat than that between Yunnan and Xinjiang wheat or between Tibetan and Xinjiang wheat.
基金This research was financially supported by the Natural Science Basic Research Program of Shaanxi,China(2022JM-126)the National Natural Science Foundation of China(52079132).
文摘The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.
基金This work was supported by grants from the Natural Science Foundation of Shandong Province,China(ZR2020MC096,ZR2021ZD31,and ZR2020MC151)the Agricultural Variety Improvement Project of Shandong Province,China(2021LZGC013 and 2022LZGC002).
文摘Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing population.Here,45,298 single-nucleotide polymorphisms(SNPs)from 55K chip arrays were used to genotype a panel of 768 wheat cultivars,and a total of 154 quantitative trait loci(QTLs)were detected for eight traits under three environments by genome-wide association study(GWAS).Three QTLs(qMn-3B.1,qFe-3B.4,and qSe-3B.1/qFe-3B.6)detected repeatedly under different environments or traits were subjected to subsequent analyses based on linkage disequilibrium decay and the P-values of significant SNPs.Significant SNPs in the three QTL regions formed six haplotypes for qMn-3B.1,three haplotypes for qFe-3B.4,and three haplotypes for qSe-3B.1/qFe-3B.6.Phenotypic analysis revealed significant differences among haplotypes.These results indicated that the concentrations of several nutrient elements have been modified during the domestication of landraces to modern wheat.Based on the QTL regions,we identified 15 high-confidence genes,eight of which were stably expressed in different tissues and/or developmental stages.TraesCS3B02G046100 in qMn-3B.1 and TraesCS3B02G199500 in qSe-3B.1/qFe-3B.6 were both inferred to interact with metal ions according to the Gene Ontology(GO)analysis.TraesCS3B02G199000,which belongs to qSe-3B.1/qFe-3B.6,was determined to be a member of the WRKY gene family.Overall,this study provides several reliable QTLs that may significantly affect the concentrations of nutrient elements in wheat grain,and this information will facilitate the breeding of wheat cultivars with improved grain properties.
基金supported by the National Natural Science Foundation of China(31201168)the Basic Research Program of Shanxi Province,China(20210302123411)the earmarked fund for Modern Agro-industry Technology Research System,China(2022-07).
文摘Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.
基金This work was supported by the National Key Research and Development Program of China(2022YFF1002300)the Quancheng‘5150’Talent Program,China(07962021047)the Agriculture Applied Technology Initiative of Jinan Government,China(CX202113).
文摘Wheat germplasm is a fundamental resource for basic research,applied studies,and wheat breeding,which can be enriched normally by several paths,such as collecting natural lines,accumulating breeding lines,and introducing mutagenesis materials.Ethyl methane sulfonate(EMS)is an alkylating agent that can effectively introduce genetic variations in a wide variety of plant species.In this study,we created a million-scale EMS population(MEP)that started with the Chinese wheat cultivars‘Luyan 128’,‘Jimai 38’,‘Jimai 44’,and‘Shannong 30’.In the M1 generation,the MEP had numerous phenotypical variations,such as>3,000 chlorophyll-deficient mutants,2,519 compact spikes,and 1,692 male sterile spikes.There were also rare mutations,including 30 independent tillers each with double heads.Some M1 variations of chlorophyll-deficiency and compact spikes were inheritable,appearing in the M2 or M3 generations.To advance the entire MEP to higher generations,we adopted a single-seed descendent(SSD)approach.All other seed composites of M2 were used to screen other agronomically important traits,such as the tolerance to herbicide quizalofop-P-methyl.The MEP is available for collaborative projects,and provides a valuable toolbox for wheat genetics and breeding for sustainable agriculture.
基金supported by the National Key R&D Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250).
文摘Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.
基金supported by the National Key Research and Development Program of China(2022YFD1200700)the Nuclear Energy Development Research Program of the State Administration of Science,Technology,and Industry for National Defense(Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation)the China Agriculture Research System of MOF and MARA(CARS-03)。
文摘Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat.
基金supported by the Key Research and Development Program of Zhejiang(2024SSYS0099)the National Key Research and Development Program of China(2022YFD1200203)Key Research and Development Program of Hebei province(22326305D).
文摘Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.
基金supported financially by the National Key Research and Development Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250)。
文摘Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China(LY21C200008)。
文摘Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food systems.Herein,we proposed a silver nanoparticles(AgNPs)/metal-organic framework(MOF)substrate-based surface-enhanced Raman scattering(SERS)sensor for the high-sensitive on-site detection of wheat gluten.The detection occurred on the newly in-situ synthesized AgNPs/MOF-modified SERS substrate,providing an enhancement factor(EF)of 1.89×10^(5).Benefitting from the signal amplification function of AgNPs/MOF and the superiority of SERS,this sensor represented high sensitivity performance and a wide detection range from 1×10^(-15)mol/L to 2×10^(-6)mol/L with a detection limit of 1.16×10^(-16)mol/L,which allowed monitoring the trace of wheat gluten in complex food system without matrix interference.This reliable sandwich SERS sensor may provide a promising platform for high-sensitive,accurate,and on-site detection of allergens in the field of food safety.
基金supported by the National Natural Science Foundation of China(42101382 and 42201407)the Shandong Provincial Natural Science Foundation China(ZR2020QD016 and ZR2022QD120)。
文摘The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U22A20609)the National Key Research and Development Program of China(2021YFD1901102-4)+2 种基金the State Key Laboratory of Integrative Sustainable Dryland Agriculture(in preparation)the Shanxi Agricultural University,China(202003-3)the Open Fund from the State Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province,China(2020002)。
文摘Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.