期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Web使用挖掘技术研究 被引量:37
1
作者 涂承胜 陆玉昌 《小型微型计算机系统》 CSCD 北大核心 2004年第7期1177-1184,共8页
简要介绍了 WEB挖掘的基本概念及其分类 ,讨论了 Web使用挖掘的有关理论及其应用 .重点分析了 Web使用挖掘的主要研究对象和研究方法 ,包括 :挖掘的数据对象、数据的采集、数据预处理、模式发现、模式分析及其相关技术 .展望了
关键词 web挖掘 web网络使用挖掘 数据预处理 模式发现 模式分析
在线阅读 下载PDF
Web使用挖掘技术研究
2
作者 涂承胜 《重庆三峡学院学报》 2005年第3期14-18,共5页
本文简要介绍了WEB挖掘的基本概念及其分类,讨论了Web使用挖掘的有关理论。重点分析了Web使用挖掘的主要研究对象和研究方法,包括挖掘的数据对象、数据的采集、数据预处理、模式发现、模式分析及其相关技术。
关键词 web挖掘 web网络使用挖掘 数据预处理 模式发现 模式分析
在线阅读 下载PDF
The Study on Network Education based on Web Data Mining
3
作者 Chen Jing 《International English Education Research》 2014年第7期83-85,共3页
Since the emergency of the mining of web usage patterns in the nineties of the 20th century, it has gotten a great development because of its wide range of application. To take advantage of the mining of web usage pat... Since the emergency of the mining of web usage patterns in the nineties of the 20th century, it has gotten a great development because of its wide range of application. To take advantage of the mining of web usage patterns, it will make network education system to meet personalized requirement better by distinguishing user interest and finding out important page. 展开更多
关键词 web Usage Mining network education personalized requirement
在线阅读 下载PDF
Parallelized User Clicks Recognition from Massive HTTP Data Based on Dependency Graph Model 被引量:1
4
作者 FANG Chcng LIU Jun LEI Zhenming 《China Communications》 SCIE CSCD 2014年第12期13-25,共13页
With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this pap... With increasingly complex website structure and continuously advancing web technologies,accurate user clicks recognition from massive HTTP data,which is critical for web usage mining,becomes more difficult.In this paper,we propose a dependency graph model to describe the relationships between web requests.Based on this model,we design and implement a heuristic parallel algorithm to distinguish user clicks with the assistance of cloud computing technology.We evaluate the proposed algorithm with real massive data.The size of the dataset collected from a mobile core network is 228.7GB.It covers more than three million users.The experiment results demonstrate that the proposed algorithm can achieve higher accuracy than previous methods. 展开更多
关键词 cloud computing massive data graph model web usage mining
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部