The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data in...Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data into a series of time slices and independently reconstructs each time slice.However,when this strategy is employed,the potential correlations between two adjacent time slices are ignored,which degrades reconstruction performance.Therefore,this study proposes the use of a two-dimensional curvelet transform and the fast iterative shrinkage thresholding algorithm for data reconstruction.Based on the signifi cant overlapping characteristics between the curvelet coeffi cient support sets of two adjacent time slices,a weighted operator is constructed in the curvelet domain using the prior support set provided by the previous reconstructed time slice to delineate the main energy distribution range,eff ectively providing prior information for reconstructing adjacent slices.Consequently,the resulting weighted fast iterative shrinkage thresholding algorithm can be used to reconstruct 3D seismic data.The processing of synthetic and fi eld data shows that the proposed method has higher reconstruction accuracy and faster computational speed than the conventional fast iterative shrinkage thresholding algorithm for handling missing 3D seismic data.展开更多
A pseudo-cone in ℝ^(n) is a nonempty closed convex set K not containing the origin and such thatλK⊆K for allλ≥1.It is called a C-pseudo-cone if C is its recession cone,where C is a pointed closed convex cone with i...A pseudo-cone in ℝ^(n) is a nonempty closed convex set K not containing the origin and such thatλK⊆K for allλ≥1.It is called a C-pseudo-cone if C is its recession cone,where C is a pointed closed convex cone with interior points.The cone-volume measure of a pseudo-cone can be defined similarly as for convex bodies,but it may be infinite.After proving a necessary condition for cone-volume measures of C-pseudo-cones,we introduce suitable weights for cone-volume measures,yielding finite measures.Then we provide a necessary and sufficient condition for a Borel measure on the unit sphere to be the weighted cone-volume measure of some C-pseudo-cone.展开更多
An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the ...An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand...Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.展开更多
This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates ...This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.展开更多
In this paper,we study multiplication operators on weighted Dirichlet spaces D_(β)(β∈R).Let n be a positive integer and β∈R,we show that the multiplication operator M_(z)^(n) on D_(β) is similar to the operator ...In this paper,we study multiplication operators on weighted Dirichlet spaces D_(β)(β∈R).Let n be a positive integer and β∈R,we show that the multiplication operator M_(z)^(n) on D_(β) is similar to the operator ⊕_(1)^(n)M_(z)on the space⊕_(1)^(n)D_(β).Moreover,we prove that M_(z)^(n)(≥2)on Dβis unitarily equivalent to ⊕_(1)^(n)M_(z) on⊕_(1)^(n)D_(β) if and only if β=0.In addition,we completely characterize the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces z^(k)D_(β)(k≥1),and the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces S_(j)(0≤j<n).Abkar,Cao and Zhu[Complex Anal Oper Theory,2020,14:Art 58]pointed out that it is an important,natural,and difficult question in operator theory to identify the commutant of a bounded linear operator.They characterized the commutant A′( M_(z)^(n))of M_(z)^(n)on a family of analytic function spaces A_(α)^(2)(α∈R)on D(in fact,the family of spaces A_(α)^(2)(α∈R)is the same with the family of spaces D_(β)(β∈R))in terms of the multiplier algebra of the underlying function spaces.In this paper,we give a new characterization of the commutant A′( M_(z)^(n))of M_(z)^(n)on D_(β),and characterize the self-adjoint operators and unitary operators in A'(M_(z)^(n)).We find that the class of self-adjoint operators(unitary operators)in A'(M_(z)^(n))when β≠0 is different from the class of self-adjoint operators(unitary operators)in A′( M_(z)^(n))when β=0.展开更多
In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f...For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.展开更多
This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance compariso...This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance comparison to a predefined reference point. We find the optimal investment strategy by maximizing a weighted average utility of a concave utility and an Sshaped utility via a concavification technique and the martingale method. Numerical results are carried out to show the impact of the extent to which the manager pays attention to the change of relative performance related to the reference point on the optimal terminal relative performance.展开更多
In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and...In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.展开更多
Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton re...Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns.Deep learning techniques like convolutional neural networks(CNNs),long short-term memory(LSTM),and graph convolutional networks(GCNs)improve recognition in large datasets,while the traditional machine learning methods like SVM(support vector machines),RF(random forest),and LR(logistic regression),combined with handcrafted features and ensemble approaches,perform well but struggle with the complexity of fast-paced sports like badminton.We proposed an ensemble learning model combining support vector machines(SVM),logistic regression(LR),random forest(RF),and adaptive boosting(AdaBoost)for badminton action recognition.The data in this study consist of video recordings of badminton stroke techniques,which have been extracted into spatiotemporal data.The three-dimensional distance between each skeleton point and the right hip represents the spatial features.The temporal features are the results of Fast Dynamic Time Warping(FDTW)calculations applied to 15 frames of each video sequence.The weighted ensemble model employs soft voting classifiers from SVM,LR,RF,and AdaBoost to enhance the accuracy of badminton action recognition.The E2 ensemble model,which combines SVM,LR,and AdaBoost,achieves the highest accuracy of 95.38%.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting...Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.展开更多
PHT-splines are defined as polynomial splines over hierarchical T-meshes with very efficient local refinement properties.The original PHT-spline basis functions constructed by the truncation mechanism have a decay phe...PHT-splines are defined as polynomial splines over hierarchical T-meshes with very efficient local refinement properties.The original PHT-spline basis functions constructed by the truncation mechanism have a decay phenomenon,resulting in numerical instability.The non-decay basis functions are constructed as the B-splines that are defined on the 2×2 tensor product meshes associated with basis vertices in Kang et al.,but at the cost of losing the partition of unity.In the field of finite element analysis and topology optimization,forming the partition of unity is the default ingredient for constructing basis functions of approximate spaces.In this paper,we will show that the non-decay PHT-spline basis functions proposed by Kang et al.can be appropriately modified to form a partition of unity.Each non-decay basis function is multiplied by a positive weight to form the weighted basis.The weights are solved such that the sum of weighted bases is equal to 1 on the domain.We provide two methods for calculatingweights,based on geometric information of basis functions and the subdivision of PHT-splines.Weights are given in the form of explicit formulas and can be efficiently calculated.We also prove that the weights on the admissible hierarchical T-meshes are positive.展开更多
Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial ...Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology pro...The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.展开更多
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金National Natural Science Foundation of China under Grant 42304145Jiangxi Provincial Natural Science Foundation under Grant 20242BAB26051,20242BAB25191 and 20232BAB213077+1 种基金Foundation of National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing under Grant 2024QZ-TD-13Open Fund(FW0399-0002)of SINOPEC Key Laboratory of Geophysics。
文摘Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data into a series of time slices and independently reconstructs each time slice.However,when this strategy is employed,the potential correlations between two adjacent time slices are ignored,which degrades reconstruction performance.Therefore,this study proposes the use of a two-dimensional curvelet transform and the fast iterative shrinkage thresholding algorithm for data reconstruction.Based on the signifi cant overlapping characteristics between the curvelet coeffi cient support sets of two adjacent time slices,a weighted operator is constructed in the curvelet domain using the prior support set provided by the previous reconstructed time slice to delineate the main energy distribution range,eff ectively providing prior information for reconstructing adjacent slices.Consequently,the resulting weighted fast iterative shrinkage thresholding algorithm can be used to reconstruct 3D seismic data.The processing of synthetic and fi eld data shows that the proposed method has higher reconstruction accuracy and faster computational speed than the conventional fast iterative shrinkage thresholding algorithm for handling missing 3D seismic data.
文摘A pseudo-cone in ℝ^(n) is a nonempty closed convex set K not containing the origin and such thatλK⊆K for allλ≥1.It is called a C-pseudo-cone if C is its recession cone,where C is a pointed closed convex cone with interior points.The cone-volume measure of a pseudo-cone can be defined similarly as for convex bodies,but it may be infinite.After proving a necessary condition for cone-volume measures of C-pseudo-cones,we introduce suitable weights for cone-volume measures,yielding finite measures.Then we provide a necessary and sufficient condition for a Borel measure on the unit sphere to be the weighted cone-volume measure of some C-pseudo-cone.
基金The National High Technology Research and Development Program of China (863Program) ( No2009AA01Z235,2006AA01Z263)the Research Fund of the National Mobile Communications Research Laboratory of Southeast University(No2008A10)
文摘An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
基金the financial support of the National Natural Science Foundation of China(Grant No.42074016,42104025,42274057and 41704007)Hunan Provincial Natural Science Foundation of China(Grant No.2021JJ30244)Scientific Research Fund of Hunan Provincial Education Department(Grant No.22B0496)。
文摘Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations.
基金supported by National Natural Science Foundation of China(No.61771005)
文摘This paper studies large-scale multi-input multi-output(MIMO)orthogonal frequency division multiplexing(OFDM)communications in a broadband frequency-selective channel,where a massive MIMO base station(BS)communicates with multiple users equipped with multi-antenna.We develop a hybrid precoding design to maximize the weighted sum-rate(WSR)of the users by optimizing the digital and the analog precoders alternately.For the digital part,we employ block-diagonalization to eliminate inter-user interference and apply water-filling power allocation to maximize the WSR.For the analog part,the optimization of the PSN is formulated as an unconstrained problem,which can be efficiently solved by a gradient descent method.Numerical results show that the proposed block-diagonal hybrid precoding algorithm can outperform the existing works.
基金supported by the National Natural Science Foundation of China(12101179,12171138,12171373)the Natural Science Foundation of Hebei Province of China(A2022207001)。
文摘In this paper,we study multiplication operators on weighted Dirichlet spaces D_(β)(β∈R).Let n be a positive integer and β∈R,we show that the multiplication operator M_(z)^(n) on D_(β) is similar to the operator ⊕_(1)^(n)M_(z)on the space⊕_(1)^(n)D_(β).Moreover,we prove that M_(z)^(n)(≥2)on Dβis unitarily equivalent to ⊕_(1)^(n)M_(z) on⊕_(1)^(n)D_(β) if and only if β=0.In addition,we completely characterize the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces z^(k)D_(β)(k≥1),and the unitary equivalence of the restrictions of M_(z)^(n) to different invariant subspaces S_(j)(0≤j<n).Abkar,Cao and Zhu[Complex Anal Oper Theory,2020,14:Art 58]pointed out that it is an important,natural,and difficult question in operator theory to identify the commutant of a bounded linear operator.They characterized the commutant A′( M_(z)^(n))of M_(z)^(n)on a family of analytic function spaces A_(α)^(2)(α∈R)on D(in fact,the family of spaces A_(α)^(2)(α∈R)is the same with the family of spaces D_(β)(β∈R))in terms of the multiplier algebra of the underlying function spaces.In this paper,we give a new characterization of the commutant A′( M_(z)^(n))of M_(z)^(n)on D_(β),and characterize the self-adjoint operators and unitary operators in A'(M_(z)^(n)).We find that the class of self-adjoint operators(unitary operators)in A'(M_(z)^(n))when β≠0 is different from the class of self-adjoint operators(unitary operators)in A′( M_(z)^(n))when β=0.
基金supported by the Natural Science Foundation of China(12271134)the Shanxi Scholarship Council of China(2020–089)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200019).
文摘In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
文摘For analytic functions u,ψin the unit disk D in the complex plane and an analytic self-mapφof D,we describe in this paper the boundedness and compactness of product type operators T_(u,ψ,φ)f(z)=u(z)f(φ(z))+ψ(z)f'(φ(z)),z∈D,acting between weighted Bergman spaces induced by a doubling weight and a Bloch type space with a radial weight.
基金Supported by the National Natural Science Foundation of China(12071335)the Humanities and Social Science Research Projects in Ministry of Education(20YJAZH025).
文摘This paper studies the optimal portfolio allocation of a fund manager when he bases decisions on both the absolute level of terminal relative performance and the change value of terminal relative performance comparison to a predefined reference point. We find the optimal investment strategy by maximizing a weighted average utility of a concave utility and an Sshaped utility via a concavification technique and the martingale method. Numerical results are carried out to show the impact of the extent to which the manager pays attention to the change of relative performance related to the reference point on the optimal terminal relative performance.
文摘In this paper,we introduce the weighted multilinear p-adic Hardy operator and weighted multilinear p-adic Ces`aro operator,we also obtain the boundedness of these two operators on the product of p-adic Herz spaces and p-adic Morrey-Herz spaces,the corresponding operator norms are also established in each case.Moreover,the boundedness of commutators of these two operators with symbols in central bounded mean oscillation spaces and Lipschitz spaces on p-adic Morrey-Herz spaces are also given.
基金supported by the Center for Higher Education Funding(BPPT)and the Indonesia Endowment Fund for Education(LPDP),as acknowledged in decree number 02092/J5.2.3/BPI.06/9/2022。
文摘Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns.Deep learning techniques like convolutional neural networks(CNNs),long short-term memory(LSTM),and graph convolutional networks(GCNs)improve recognition in large datasets,while the traditional machine learning methods like SVM(support vector machines),RF(random forest),and LR(logistic regression),combined with handcrafted features and ensemble approaches,perform well but struggle with the complexity of fast-paced sports like badminton.We proposed an ensemble learning model combining support vector machines(SVM),logistic regression(LR),random forest(RF),and adaptive boosting(AdaBoost)for badminton action recognition.The data in this study consist of video recordings of badminton stroke techniques,which have been extracted into spatiotemporal data.The three-dimensional distance between each skeleton point and the right hip represents the spatial features.The temporal features are the results of Fast Dynamic Time Warping(FDTW)calculations applied to 15 frames of each video sequence.The weighted ensemble model employs soft voting classifiers from SVM,LR,RF,and AdaBoost to enhance the accuracy of badminton action recognition.The E2 ensemble model,which combines SVM,LR,and AdaBoost,achieves the highest accuracy of 95.38%.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
文摘Though atomic decomposition is a very useful tool for studying the boundedness on Hardy spaces for some sublinear operators,untill now,the boundedness of operators on weighted Hardy spaces in a multi-parameter setting has been established only by almost orthogonality estimates.In this paper,we mainly establish the boundedness on weighted multi-parameter local Hardy spaces via atomic decomposition.
基金The work was supported by the NSF of China(No.11801393)the Natural Science Foundation of Jiangsu Province,China(No.BK20180831).
文摘PHT-splines are defined as polynomial splines over hierarchical T-meshes with very efficient local refinement properties.The original PHT-spline basis functions constructed by the truncation mechanism have a decay phenomenon,resulting in numerical instability.The non-decay basis functions are constructed as the B-splines that are defined on the 2×2 tensor product meshes associated with basis vertices in Kang et al.,but at the cost of losing the partition of unity.In the field of finite element analysis and topology optimization,forming the partition of unity is the default ingredient for constructing basis functions of approximate spaces.In this paper,we will show that the non-decay PHT-spline basis functions proposed by Kang et al.can be appropriately modified to form a partition of unity.Each non-decay basis function is multiplied by a positive weight to form the weighted basis.The weights are solved such that the sum of weighted bases is equal to 1 on the domain.We provide two methods for calculatingweights,based on geometric information of basis functions and the subdivision of PHT-splines.Weights are given in the form of explicit formulas and can be efficiently calculated.We also prove that the weights on the admissible hierarchical T-meshes are positive.
基金supported by the MOE(Ministry of Education of China)Project of Humanities and Social Sciences(23YJAZH169)the Hubei Provincial Department of Education Outstanding Youth Scientific Innovation Team Support Foundation(T2020017)Henan Foreign Experts Project No.HNGD2023027.
文摘Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金Jilin Science and Technology Development Plan Project(No.20200403075SF)Doctoral Research Start-Up Fund of Northeast Electric Power University(No.BSJXM-2018202).
文摘The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.