Coronavirus is a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused by a novel coronavirus belonging to the family Coronaviridae. The disease was first discovered in December 2019 in Wuhan City, Hubei...Coronavirus is a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused by a novel coronavirus belonging to the family Coronaviridae. The disease was first discovered in December 2019 in Wuhan City, Hubei Province, China. A few months later, the disease spread all over the world and became an epidemic. The infection for most people is mild to moderate but in Vulnerable groups, if they have the infections, they might experience severe COVID-19. Saudi Arabia initiated its response plan early, and all sectors and agencies worked in an integrated way to combat the disease. It has maintained proper communication during the pandemic and ensured community involvement, epidemiologic surveillance, and activation of rapid response teams. The COVID-19 pandemic significantly affected daily lives. Schools and daycares were closed, education was online, traveling stopped, work was suspended, gathering in social activities and practicing religious rituals, like praying or doing Umrah or Hajj, were banded. Changing lifestyles as a response to COVID-19 impacted whole communities with different categories of children, parents, and families. Women usually take the majority of daily responsibilities. The sudden change in lifestyle during COVID-19 put pressure on mothers, especially those who are working to balance work and family obligations. This study aims to identify the impact of Coronavirus disease 2019 on working mothers in Saudi Arabia. Method: Data of the study was collected through survey posted on social media and analyzed through Excel. It focuses on five aspects: health, lifestyle, social relations, work production and financial status. Our target population was working mothers in Saudi Arabia aged at least 25 years. Results: In this study, all factors affected working mothers categorized under two groups: Social Economic Status and Work suspension. For Social Economic Status factors, we find five factors which are monthly income, main breadwinner, number of children at school age, type of housing, and type of work. Almost all mothers include spiritual activities to their routine to cope with stress during this period. About half of our sample have negative impact on their mental health because they are the main breadwinner, and mothers with a smaller number of children at school age have more challenges to cope up. We found that mothers who own a house or work at governmental sector have better outcome of health. After analyzing data related to Work suspension, we found that mothers who have work support have better management for life circumstances, however their health outcomes were negatively affected. In addition, mothers working at education sector have the highest positive impact among other sectors. Our data shows that working mothers’ abilities to follow up with their children decreased. This study recommends that there is need to invest more in working mothers’ research and supportive programs and ensure collaboration globally to address working mothers’ needs and share experiences.展开更多
This paper is concerned with a non-intrusive anomaly detection method for carving machine systems with variant working conditions,and a novel unsupervised detection framework that integrates convolutional autoencoder(...This paper is concerned with a non-intrusive anomaly detection method for carving machine systems with variant working conditions,and a novel unsupervised detection framework that integrates convolutional autoencoder(CAE)and Gaussian mixture hidden Markov model(GMHMM)is proposed.Firstly,the built-in sensor information under normal conditions is recorded,and a 1D convolutional autoencoder is employed to compress high-dimensional time series,thereby transforming the anomaly detection problem in high-dimensional space into a density estimation problem in a latent low-dimensional space.Then,two separate estimation networks are utilized to predict the mixture memberships and state transition probabilities for each sample,enabling GMHMM to handle low-dimensional representations and multi-condition information.Furthermore,a cost function comprising CAE reconstruction and GMHMM probability assessment is constructed for the low-dimensional representation generation and subsequent density estimation in an end-to-end fashion,and the joint optimization effectively enhances the anomaly detection performance.Finally,experiments are carried out on a self-developed multi-axis carving machine platform to validate the effectiveness and superiority of the proposed method.展开更多
To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The ...To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters.展开更多
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to st...BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to statistics,self-harm and suicide,for which there is no effective intervention,are the second leading causes of death.AIM To explore the relationship between different elements and levels of physical activity and college students’depression-symptom-specific working memory indicators.METHODS Of 143 college students were analyzed using the Beck Depression Self-Rating Scale,the Physical Activity Rating Scale,and the Working Memory Task.RESULTS There was a significant difference between college students with depressive symptoms and healthy college students in completing verbal and spatial working memory(SWM)tasks correctly(all P<0.01).Physical Activity Scale-3 scores were significantly and positively correlated with the correct rate of the verbal working memory task(r=0.166)and the correct rate of the SWM task(r=0.210)(all P<0.05).There were significant differences in the correct rates of verbal and SWM tasks according to different exercise intensities(all P<0.05)and different exercise durations(all P<0.05),and no significant differences in the correct rates of verbal and SWM tasks by exercise frequency(all P>0.05).CONCLUSION An increase in physical exercise among college students,particularly medium-and high-intensity exercise and exercise of 30 min or more,can improve the correct rate of completing working memory tasks.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of li...Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.展开更多
The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018...The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018,this paper measured the development level of the digital economy in China from the perspectives of internet development and digital financial inclusion,and tested the mechanisms of how the digital economy affected rural residents’working hours.The results showed that the digital economy extended rural residents’working hours by expanding information channels and enhancing human capital,and this mechanism was affected by heterogeneity in rural residents’educational background,age,and social capital.Building on these findings,this paper holds that to increase rural residents’income by extending their working hours and achieving common prosperity for all,it is necessary to expand the opportunities for rural residents to participate in skills training and promote their accumulation of human capital.展开更多
Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line leng...Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.展开更多
This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,m...This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,mind wandering(MW),in the course of reading.Sixty first-year university non-English majors participated in the study.A two-factor mixed experimental design of 2(text difficulty:difficult and simple)×2(WMC:high/large and low/small)was employed.Results revealed that 1)the main and interaction effects of WMC and text difficulty on voluntary MW were significant,whereas those on involuntary MW were not;2)while reading the easy texts,the involuntary MW of high-WMC individuals was less frequent than that of low-WMC ones,whereas while reading the difficult ones,the direct relationship between WMC and involuntary MW was not found;and that 3)high-WMC individuals had a lower overall rate of MW and better reading performance than low-WMC individuals did,but with increasing text difficulty,their rates of overall MW and voluntary MW were getting higher and higher,and the reading performance was getting lower and lower.These results lend support to WM theory and have pedagogical implications for the instruction of L2 reading.展开更多
Coal-rock interface identification technology was pivotal in automatically adjusting the shearer's cutting drum during coal mining.However,it also served as a technical bottleneck hindering the advancement of inte...Coal-rock interface identification technology was pivotal in automatically adjusting the shearer's cutting drum during coal mining.However,it also served as a technical bottleneck hindering the advancement of intelligent coal mining.This study aimed to address the poor accuracy of current coal-rock identification technology on comprehensive working faces,coupled with the limited availability of coal-rock datasets.The loss function of the SegFormer model was enhanced,the model's hyperparameters and learning rate were adjusted,and an automatic recognition method was proposed for coal-rock interfaces based on FL-SegFormer.Additionally,an experimental platform was constructed to simulate the dusty environment during coal-rock cutting by the shearer,enabling the collection of coal-rock test image datasets.The morphology-based algorithms were employed to expand the coal-rock image datasets through image rotation,color dithering,and Gaussian noise injection so as to augment the diversity and applicability of the datasets.As a result,a coal-rock image dataset comprising 8424 samples was generated.The findings demonstrated that the FL-SegFormer model achieved a Mean Intersection over Union(MIoU)and mean pixel accuracy(MPA)of 97.72%and 98.83%,respectively.The FLSegFormer model outperformed other models in terms of recognition accuracy,as evidenced by an MloU exceeding 95.70% of the original image.Furthermore,the FL-SegFormer model using original coal-rock images was validated from No.15205 working face of the Yulin test mine in northern Shaanxi.The calculated average error was only 1.77%,and the model operated at a rate of 46.96 frames per second,meeting the practical application and deployment requirements in underground settings.These results provided a theoretical foundation for achieving automatic and efficient mining with coal mining machines and the intelligent development of coal mines.展开更多
One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(wa...One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(water)heating systems with systems,the main part of which are gas infrared emitters.But the mass introduction of such systems based on emitters was held back until recently by the lack of scientific and technical foundations for ensuring not only the routine thermal conditions of local working areas,but also ensuring acceptable concentrations of carbon dioxide,which is formed during the operation of a gas emitter.Solving the latter problem by the method of experimental selection of heating and air exchange modes is practically impossible due to the multivariate nature of possible solutions to this problem.Therefore,the purpose of the work is to analyze the results of theoretical studies of the possibility of ensuring an acceptable level of carbon dioxide concentrations in local working areas during the operation of gas infrared emitters and an air exchange system.Numerical modeling of heat and mass transfer processes under such conditions was performed in a fairly wide range of the main significant factors:air flow rate in the air exchange system from 0.01 to 0.04 kg/s,the position of the air inlet and outlet channels relative to the radiator and the local workplace(height from 0.3 to 4.1 m).It was found that by varying the numerical values of these factors,it is possible to ensure carbon dioxide concentrations in the local working area within the permissible limits of up to 1400 ppm.展开更多
BACKGROUND Return to work(RTW)serves as an indication for young and middle-aged colorectal cancer(CRC)survivors to resume their normal social lives.However,these survivors encounter significant challenges during their...BACKGROUND Return to work(RTW)serves as an indication for young and middle-aged colorectal cancer(CRC)survivors to resume their normal social lives.However,these survivors encounter significant challenges during their RTW process.Hence,scientific research is necessary to explore the barriers and facilitating factors of returning to work for young and middle-aged CRC survivors.AIM To examine the current RTW status among young and middle-aged CRC survivors and to analyze the impact of RTW self-efficacy(RTW-SE),fear of progression(FoP),eHealth literacy(eHL),family resilience(FR),and financial toxicity(FT)on their RTW outcomes.METHODS A cross-sectional investigation was adopted in this study.From September 2022 to February 2023,a total of 209 participants were recruited through a convenience sampling method from the gastrointestinal surgery department of a class A tertiary hospital in Chongqing.The investigation utilized a general information questionnaire alongside scales assessing RTW-SE,FoP,eHL,FR,and FT.To analyze the factors that influence RTW outcomes among young and middle-aged CRC survivors,Cox regression modeling and Kaplan-Meier survival analysis were used.RESULTS A total of 43.54%of the participants successfully returned to work,with an average RTW time of 100 days.Cox regression univariate analysis revealed that RTW-SE,FoP,eHL,FR,and FT were significantly different between the non-RTW and RTW groups(P<0.05).Furthermore,Cox regression multivariate analysis identified per capita family monthly income,job type,RTW-SE,and FR as independent influencing factors for RTW(P<0.05).CONCLUSION The RTW rate requires further improvement.Elevated levels of RTW-SE and FR were found to significantly increase RTW among young and middle-aged CRC survivors.Health professionals should focus on modifiable factors,such as RTW-SE and FR,to design targeted RTW support programs,thereby facilitating their timely reintegration into mainstream society.展开更多
Background: First responders (firefighters, paramedics, and police) working in an urban setting can be exposed to a high-stress environment caused by strenuous physical exertion, potentially dangerous work conditions,...Background: First responders (firefighters, paramedics, and police) working in an urban setting can be exposed to a high-stress environment caused by strenuous physical exertion, potentially dangerous work conditions, sleep deprivation due to shift work, poor dietary habits, psychological stress and noise levels that are excessive. This may induce chronic increases in blood pressure. The purpose of this study was to determine the presence of hypertension in people working in occupations generally accepted as high stress in comparison to those working in an environment where less of these obvious high stressors were present. Methods: Resting blood pressure was measured by TrUBP in 1067 on-duty first responders (fire, paramedic, and police), and in participants generally associated with a lower-stress work environment (transit workers, city and bank employees, factory workers and legislature employees). Results: The average age, systolic and diastolic blood pressures were significantly lower in those employees working in a high-stress environment than those in a low-stress job. This difference was observed in both male and female sexes. Conclusions: Our data do not support an association of high resting blood pressure values in those employed in activities typically associated with a high-stress urban working environment.展开更多
This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digiti...This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.展开更多
文摘Coronavirus is a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused by a novel coronavirus belonging to the family Coronaviridae. The disease was first discovered in December 2019 in Wuhan City, Hubei Province, China. A few months later, the disease spread all over the world and became an epidemic. The infection for most people is mild to moderate but in Vulnerable groups, if they have the infections, they might experience severe COVID-19. Saudi Arabia initiated its response plan early, and all sectors and agencies worked in an integrated way to combat the disease. It has maintained proper communication during the pandemic and ensured community involvement, epidemiologic surveillance, and activation of rapid response teams. The COVID-19 pandemic significantly affected daily lives. Schools and daycares were closed, education was online, traveling stopped, work was suspended, gathering in social activities and practicing religious rituals, like praying or doing Umrah or Hajj, were banded. Changing lifestyles as a response to COVID-19 impacted whole communities with different categories of children, parents, and families. Women usually take the majority of daily responsibilities. The sudden change in lifestyle during COVID-19 put pressure on mothers, especially those who are working to balance work and family obligations. This study aims to identify the impact of Coronavirus disease 2019 on working mothers in Saudi Arabia. Method: Data of the study was collected through survey posted on social media and analyzed through Excel. It focuses on five aspects: health, lifestyle, social relations, work production and financial status. Our target population was working mothers in Saudi Arabia aged at least 25 years. Results: In this study, all factors affected working mothers categorized under two groups: Social Economic Status and Work suspension. For Social Economic Status factors, we find five factors which are monthly income, main breadwinner, number of children at school age, type of housing, and type of work. Almost all mothers include spiritual activities to their routine to cope with stress during this period. About half of our sample have negative impact on their mental health because they are the main breadwinner, and mothers with a smaller number of children at school age have more challenges to cope up. We found that mothers who own a house or work at governmental sector have better outcome of health. After analyzing data related to Work suspension, we found that mothers who have work support have better management for life circumstances, however their health outcomes were negatively affected. In addition, mothers working at education sector have the highest positive impact among other sectors. Our data shows that working mothers’ abilities to follow up with their children decreased. This study recommends that there is need to invest more in working mothers’ research and supportive programs and ensure collaboration globally to address working mothers’ needs and share experiences.
基金Supported by the National Natural Science Foundation of China(No.62203390).
文摘This paper is concerned with a non-intrusive anomaly detection method for carving machine systems with variant working conditions,and a novel unsupervised detection framework that integrates convolutional autoencoder(CAE)and Gaussian mixture hidden Markov model(GMHMM)is proposed.Firstly,the built-in sensor information under normal conditions is recorded,and a 1D convolutional autoencoder is employed to compress high-dimensional time series,thereby transforming the anomaly detection problem in high-dimensional space into a density estimation problem in a latent low-dimensional space.Then,two separate estimation networks are utilized to predict the mixture memberships and state transition probabilities for each sample,enabling GMHMM to handle low-dimensional representations and multi-condition information.Furthermore,a cost function comprising CAE reconstruction and GMHMM probability assessment is constructed for the low-dimensional representation generation and subsequent density estimation in an end-to-end fashion,and the joint optimization effectively enhances the anomaly detection performance.Finally,experiments are carried out on a self-developed multi-axis carving machine platform to validate the effectiveness and superiority of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.U2468217,U2034205,and 52308391)。
文摘To elucidate the yielding performance of compact yielding anchor cables in working state,a yielding mechanical model incorporating extrusion friction and fastening rotation under confining pressure is constructed.The yielding resistance enhancement effect(ω)caused by working environment constraints is evaluated through multi-layer composite sleeve hole expansion analysis,forming a theoretical framework for calculating the working yielding force.Laboratory and in-situ pull-out tests are conducted to determine the yielding performance and validate the analytical theory.The main conclusions are:(1)Yielding force and energy-release capacity increase withω,significantly outperforming the unconfined state.(2)In-situ tests under varying rockmass and geostress conditions(F1–F3)determine the yielding force increases to 183.4–290.1,204.0–290.8,and 235.0–327.1 kN.(3)The slight deviation(–12.5%to 6.2%)between the theoretical and measured yielding force confirms that the analytical theory effectively describes the working yielding performance.(4)ωincreases with higher geostress and improved rock mechanical properties,with initial geostress(σ_(0))and elastic modulus of surrounding rock(E_(3))identified as critical parameters.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
文摘BACKGROUND The detection rate of depression among university students has been increasing in recent years,becoming one of the main psychological diseases that endangers their physical and mental health.According to statistics,self-harm and suicide,for which there is no effective intervention,are the second leading causes of death.AIM To explore the relationship between different elements and levels of physical activity and college students’depression-symptom-specific working memory indicators.METHODS Of 143 college students were analyzed using the Beck Depression Self-Rating Scale,the Physical Activity Rating Scale,and the Working Memory Task.RESULTS There was a significant difference between college students with depressive symptoms and healthy college students in completing verbal and spatial working memory(SWM)tasks correctly(all P<0.01).Physical Activity Scale-3 scores were significantly and positively correlated with the correct rate of the verbal working memory task(r=0.166)and the correct rate of the SWM task(r=0.210)(all P<0.05).There were significant differences in the correct rates of verbal and SWM tasks according to different exercise intensities(all P<0.05)and different exercise durations(all P<0.05),and no significant differences in the correct rates of verbal and SWM tasks by exercise frequency(all P>0.05).CONCLUSION An increase in physical exercise among college students,particularly medium-and high-intensity exercise and exercise of 30 min or more,can improve the correct rate of completing working memory tasks.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
文摘Background: Working memory is an executive function that plays an important role in many aspects of daily life, and its impairment in patients with attention-deficit/hyperactivity disorder (ADHD) affects quality of life. The dorsolateral prefrontal cortex (DLPFC) has been a good target site for transcranial direct current stimulation (tDCS) due to its intense involvement in working memory. In our 2018 study, tDCS improved visual-verbal working memory in healthy subjects. Objective: This study examines the effects of tDCS on ADHD patients, particularly on verbal working memory. Methods: We conducted an experiment involving verbal working memory of two modalities, visual and auditory, and a sustained attention task that could affect working memory in 9 ADHD patients. Active or sham tDCS was applied to the left DLPFC in a single-blind crossover design. Results: tDCS significantly improved the accuracy of visual-verbal working memory. In contrast, tDCS did not affect auditory-verbal working memory and sustained attention. Conclusion: tDCS to the left DLPFC improved visual-verbal working memory in ADHD patients, with important implications for potential ADHD treatments.
基金This paper is part of the Youth Program of Science and Technology Research of Chongqing Municipal Education Commission(KJQN202300545)Youth Program of National Social Science Fund of China(21CJY001)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300567).
文摘The rapid development of the digital economy has provided a new impetus for rural residents to extend their working hours.Based on the data collected by the China Labor-force Dynamics Survey(CLDS)in 2014,2016,and 2018,this paper measured the development level of the digital economy in China from the perspectives of internet development and digital financial inclusion,and tested the mechanisms of how the digital economy affected rural residents’working hours.The results showed that the digital economy extended rural residents’working hours by expanding information channels and enhancing human capital,and this mechanism was affected by heterogeneity in rural residents’educational background,age,and social capital.Building on these findings,this paper holds that to increase rural residents’income by extending their working hours and achieving common prosperity for all,it is necessary to expand the opportunities for rural residents to participate in skills training and promote their accumulation of human capital.
文摘Taking Heidaigou Open-cast Mine and Haerwusu Open-cast Mine in Zhungeer mining area as the research objects,this paper deeply analyzes the current mining status of the two mines.Based on the existing working line length,mining technology,transportation system,equipment configuration,transportation access and many other factors,it systematically discusses the feasibility of straightening the working line of adjacent open-cast mines.Through in-depth theoretical analysis,it establishes the mathematical model of impact indicators and cost calculation,and it is concluded that the work line straightening can be technically achieved.However,from the perspective of economic benefits,straightening the working line does not show obvious advantages.
文摘This experimental study investigated how text difficulty and different working memory capacity(WMC)affected Chinese EFL learners’reading comprehension and their tendency to engage in task-unrelated thoughts,that is,mind wandering(MW),in the course of reading.Sixty first-year university non-English majors participated in the study.A two-factor mixed experimental design of 2(text difficulty:difficult and simple)×2(WMC:high/large and low/small)was employed.Results revealed that 1)the main and interaction effects of WMC and text difficulty on voluntary MW were significant,whereas those on involuntary MW were not;2)while reading the easy texts,the involuntary MW of high-WMC individuals was less frequent than that of low-WMC ones,whereas while reading the difficult ones,the direct relationship between WMC and involuntary MW was not found;and that 3)high-WMC individuals had a lower overall rate of MW and better reading performance than low-WMC individuals did,but with increasing text difficulty,their rates of overall MW and voluntary MW were getting higher and higher,and the reading performance was getting lower and lower.These results lend support to WM theory and have pedagogical implications for the instruction of L2 reading.
基金funded by the National Natural Science Foundation of China(52004201,52274143,52204153)China Postdoctoral Science Foundation(2021T140551).
文摘Coal-rock interface identification technology was pivotal in automatically adjusting the shearer's cutting drum during coal mining.However,it also served as a technical bottleneck hindering the advancement of intelligent coal mining.This study aimed to address the poor accuracy of current coal-rock identification technology on comprehensive working faces,coupled with the limited availability of coal-rock datasets.The loss function of the SegFormer model was enhanced,the model's hyperparameters and learning rate were adjusted,and an automatic recognition method was proposed for coal-rock interfaces based on FL-SegFormer.Additionally,an experimental platform was constructed to simulate the dusty environment during coal-rock cutting by the shearer,enabling the collection of coal-rock test image datasets.The morphology-based algorithms were employed to expand the coal-rock image datasets through image rotation,color dithering,and Gaussian noise injection so as to augment the diversity and applicability of the datasets.As a result,a coal-rock image dataset comprising 8424 samples was generated.The findings demonstrated that the FL-SegFormer model achieved a Mean Intersection over Union(MIoU)and mean pixel accuracy(MPA)of 97.72%and 98.83%,respectively.The FLSegFormer model outperformed other models in terms of recognition accuracy,as evidenced by an MloU exceeding 95.70% of the original image.Furthermore,the FL-SegFormer model using original coal-rock images was validated from No.15205 working face of the Yulin test mine in northern Shaanxi.The calculated average error was only 1.77%,and the model operated at a rate of 46.96 frames per second,meeting the practical application and deployment requirements in underground settings.These results provided a theoretical foundation for achieving automatic and efficient mining with coal mining machines and the intelligent development of coal mines.
基金supported by the Russian Science Foundation(grant number 20-19-00226).
文摘One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(water)heating systems with systems,the main part of which are gas infrared emitters.But the mass introduction of such systems based on emitters was held back until recently by the lack of scientific and technical foundations for ensuring not only the routine thermal conditions of local working areas,but also ensuring acceptable concentrations of carbon dioxide,which is formed during the operation of a gas emitter.Solving the latter problem by the method of experimental selection of heating and air exchange modes is practically impossible due to the multivariate nature of possible solutions to this problem.Therefore,the purpose of the work is to analyze the results of theoretical studies of the possibility of ensuring an acceptable level of carbon dioxide concentrations in local working areas during the operation of gas infrared emitters and an air exchange system.Numerical modeling of heat and mass transfer processes under such conditions was performed in a fairly wide range of the main significant factors:air flow rate in the air exchange system from 0.01 to 0.04 kg/s,the position of the air inlet and outlet channels relative to the radiator and the local workplace(height from 0.3 to 4.1 m).It was found that by varying the numerical values of these factors,it is possible to ensure carbon dioxide concentrations in the local working area within the permissible limits of up to 1400 ppm.
基金Supported by the Chongqing Medical University Program for Youth Innovation in Future Medicine,No.W0019Chongqing Municipal Education Commission’s 14th Five-Year Key Discipline Support Project,No.20240101 and No.20240102。
文摘BACKGROUND Return to work(RTW)serves as an indication for young and middle-aged colorectal cancer(CRC)survivors to resume their normal social lives.However,these survivors encounter significant challenges during their RTW process.Hence,scientific research is necessary to explore the barriers and facilitating factors of returning to work for young and middle-aged CRC survivors.AIM To examine the current RTW status among young and middle-aged CRC survivors and to analyze the impact of RTW self-efficacy(RTW-SE),fear of progression(FoP),eHealth literacy(eHL),family resilience(FR),and financial toxicity(FT)on their RTW outcomes.METHODS A cross-sectional investigation was adopted in this study.From September 2022 to February 2023,a total of 209 participants were recruited through a convenience sampling method from the gastrointestinal surgery department of a class A tertiary hospital in Chongqing.The investigation utilized a general information questionnaire alongside scales assessing RTW-SE,FoP,eHL,FR,and FT.To analyze the factors that influence RTW outcomes among young and middle-aged CRC survivors,Cox regression modeling and Kaplan-Meier survival analysis were used.RESULTS A total of 43.54%of the participants successfully returned to work,with an average RTW time of 100 days.Cox regression univariate analysis revealed that RTW-SE,FoP,eHL,FR,and FT were significantly different between the non-RTW and RTW groups(P<0.05).Furthermore,Cox regression multivariate analysis identified per capita family monthly income,job type,RTW-SE,and FR as independent influencing factors for RTW(P<0.05).CONCLUSION The RTW rate requires further improvement.Elevated levels of RTW-SE and FR were found to significantly increase RTW among young and middle-aged CRC survivors.Health professionals should focus on modifiable factors,such as RTW-SE and FR,to design targeted RTW support programs,thereby facilitating their timely reintegration into mainstream society.
文摘Background: First responders (firefighters, paramedics, and police) working in an urban setting can be exposed to a high-stress environment caused by strenuous physical exertion, potentially dangerous work conditions, sleep deprivation due to shift work, poor dietary habits, psychological stress and noise levels that are excessive. This may induce chronic increases in blood pressure. The purpose of this study was to determine the presence of hypertension in people working in occupations generally accepted as high stress in comparison to those working in an environment where less of these obvious high stressors were present. Methods: Resting blood pressure was measured by TrUBP in 1067 on-duty first responders (fire, paramedic, and police), and in participants generally associated with a lower-stress work environment (transit workers, city and bank employees, factory workers and legislature employees). Results: The average age, systolic and diastolic blood pressures were significantly lower in those employees working in a high-stress environment than those in a low-stress job. This difference was observed in both male and female sexes. Conclusions: Our data do not support an association of high resting blood pressure values in those employed in activities typically associated with a high-stress urban working environment.
文摘This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.