期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
YOLOv4-tiny模型在边缘计算平台的加速设计
1
作者 赵洋 靳永强 王艺钢 《物联网技术》 2024年第1期93-97,共5页
近年来,随着目标检测算法的快速发展,其模型规模也越来越大,在嵌入式移动端中部署时往往存在着功耗和时延等限制。针对此问题,采用输入输出通道的并行组合策略、数据定点量化、多通道数据传输等硬件加速方法,设计了一种基于FPGA平台的... 近年来,随着目标检测算法的快速发展,其模型规模也越来越大,在嵌入式移动端中部署时往往存在着功耗和时延等限制。针对此问题,采用输入输出通道的并行组合策略、数据定点量化、多通道数据传输等硬件加速方法,设计了一种基于FPGA平台的目标检测加速器架构。以YOLOv4-tiny模型算法为例进行硬件加速设计实现,使用输入输出通道并行组合策略对加速器的输入输出模块进行优化,提高了带宽的利用率;采用双缓存结构对加速器的访存机制进行优化,提高了系统的传输效率,并对加速器的性能以及资源消耗情况进行评估、分析和验证。实验结果表明,在PYNQ-Z2平台上该架构的性能为10.96 GOPS,功耗为2.98 W。与已有研究中在FPGA平台部署目标检测算法的实验进行比较发现,本文所提出的加速器的加速效果更好。 展开更多
关键词 现场可编程门阵列 硬件加速器 yolov4-tiny 目标检测 边缘计算平台 深度学习
在线阅读 下载PDF
基于改进的YOLOv4-tiny模型剪枝与量化
2
作者 李秉涛 何勇 《计算机与数字工程》 2024年第9期2721-2725,2770,共6页
针对YOLOv4-tiny存在计算量较大,检测精度低,无法满足嵌入式设备实时性需求的问题,论文基于MobileNetv3改进的轻量级网络YOLOv4-E,使用BN层的γ尺度因子对冗余的特征通道进行剪枝,在25%剪枝率下模型大小降低到了6.7MB,mAP仅降低了0.59%,... 针对YOLOv4-tiny存在计算量较大,检测精度低,无法满足嵌入式设备实时性需求的问题,论文基于MobileNetv3改进的轻量级网络YOLOv4-E,使用BN层的γ尺度因子对冗余的特征通道进行剪枝,在25%剪枝率下模型大小降低到了6.7MB,mAP仅降低了0.59%,FPS提升了8.8%。同时使用NCNN前向推理框架对剪枝后的模型进行Int8量化,在树莓派4B上检测单张图片仅需173 ms,满足了实时性需求。 展开更多
关键词 目标检测 yolov4-tiny 剪枝 嵌入式设备
在线阅读 下载PDF
快速精准识别棚内草莓的改进YOLOv4-Tiny模型 被引量:21
3
作者 孙俊 陈义德 +2 位作者 周鑫 沈继锋 武小红 《农业工程学报》 EI CAS CSCD 北大核心 2022年第18期195-203,共9页
为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取... 为了实现棚内草莓果实的快速精准识别,该研究提出一种基于改进YOLOv4-Tiny的草莓检测模型。首先,为了大幅度减少模型计算量,采用轻量型网络GhostNet作为特征提取网络,并在GhostBottleneck结构中嵌入卷积注意力模块以加强网络的特征提取能力;其次,在颈部网络中添加空间金字塔池化模块和特征金字塔网络结构,融合多尺度特征提升小目标草莓的检测效果;最后,采用高效交并比损失作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进YOLOv4-Tiny模型权重大小仅为4.68 MB,平均每幅图片的检测时间为5.63 ms,在测试集上的平均精度均值达到92.62%,相较于原YOLOv4-Tiny模型提升了5.77个百分点。与主流的目标检测模型SSD、CenterNet、YOLOv3、YOLOv4和YOLOv5s相比,改进YOLOv4-Tiny模型平均精度均值分别高出9.11、4.80、2.26、1.22、1.91个百分点,并且模型权重大小和检测速度方面均具有绝对优势,该研究可为后续果实智能化采摘提供技术支撑。 展开更多
关键词 机器视觉 图像处理 果实识别 yolov4-tiny 注意力机制 小目标
在线阅读 下载PDF
基于YOLOv4-tiny模型的水稻早期病害识别方法 被引量:6
4
作者 王圆圆 林建 王姗 《江苏农业科学》 北大核心 2023年第16期147-154,共8页
针对现有的卷积神经网络模型过于依赖设备的计算和存储能力、水稻病虫害形状大小不一、遮挡造成的病害特征显著性弱、漏检率高等问题,采用轻量化、易部署的YOLOv4-tiny模型检测和识别水稻病虫害。首先收集831张4种不同的水稻病害叶片图... 针对现有的卷积神经网络模型过于依赖设备的计算和存储能力、水稻病虫害形状大小不一、遮挡造成的病害特征显著性弱、漏检率高等问题,采用轻量化、易部署的YOLOv4-tiny模型检测和识别水稻病虫害。首先收集831张4种不同的水稻病害叶片图像样本,为了使模型具有更好的泛化能力,对已有数据进行数据增强,将样本数量扩增到了5320张。然后构建YOLOv4-tiny轻量化模型,与经典的YOLOv4算法模型相比,其主干特征提取网络CSPDarkNet53模块替换为CSPDarkNet53_tiny,使用CPSnet进行通道的分割,实现了网络模型的压缩并提高了训练速度;添加了FPN结构,对有效特征层进行特征融合;依据模型评价指标,通过试验将YOLOv4-tiny轻量化网络与经典的YOLOv4网络、Faster-RCNN网络、YOLOv4-MobileNet系列轻量化网络、YOLOv4-GhostNet轻量化网络和SSD轻量化网络进行对比。结果表明,YOLOv4-tiny的平均准确率可以达到81.79%,检测速度可以达到90.03帧/s,模型权重大小为22.4 MB,能够比较精准地识别水稻胡麻斑病、白叶枯病、稻瘟病和窄条斑病,保证在轻量化计算成本的基础上获得较好的检测精度,可以为水稻病虫害识别方法提供参考。 展开更多
关键词 轻量化模型 yolov4-tiny 水稻病虫害 目标检测 精准农业
在线阅读 下载PDF
基于YOLOv4-Tiny模型剪枝算法 被引量:3
5
作者 曹远杰 高瑜翔 +3 位作者 刘海波 吴美霖 涂雅培 夏朝禹 《成都信息工程大学学报》 2021年第6期610-614,共5页
针对YOLO系列算法参数量大、算法复杂度高提出一种基于BN(batch normalization)层剪枝方法。该方法先通过对BN层的缩放系数γ以及平移系数β添加正则化约束训练,根据BN层参数以及卷积层各通道对网络贡献度等指标设定合适阈值进行剪枝。... 针对YOLO系列算法参数量大、算法复杂度高提出一种基于BN(batch normalization)层剪枝方法。该方法先通过对BN层的缩放系数γ以及平移系数β添加正则化约束训练,根据BN层参数以及卷积层各通道对网络贡献度等指标设定合适阈值进行剪枝。该方法在基本没有精度损失的前提下对YOLOv4-Tiny模型压缩11倍,计算量减少72%,在CPU和GPU处理器下推理速度分别增快44%和29%。实验结果表明,该剪枝方法能保持模型良好性能的前提下压缩模型,减少参数,降低算法复杂度。 展开更多
关键词 深度学习 卷积神经网络 yolov4-tiny yolov3-tiny 模型剪枝 稀疏训练
在线阅读 下载PDF
改进YOLOv4-tiny模型的交通图像目标检测 被引量:1
6
作者 王竣生 《福建电脑》 2022年第11期13-18,共6页
道路交通中的实时智能安全监控系统拥有着海量图像数据源。数据源中具有不同路况、不同天气、多类别车型和多种分辨率的道路交通图像数据。针对该类图像,本文提出了一种基于YOLOv4-tiny的轻量级目标检测模型,以快速捕捉目标车辆的行驶... 道路交通中的实时智能安全监控系统拥有着海量图像数据源。数据源中具有不同路况、不同天气、多类别车型和多种分辨率的道路交通图像数据。针对该类图像,本文提出了一种基于YOLOv4-tiny的轻量级目标检测模型,以快速捕捉目标车辆的行驶信息。首先,采用移动翻转瓶颈卷积对骨干结构进行优化,有助于实现更好的内存效率;其次,在模型的颈部网络中使用改进的空间金字塔池化结构,将多尺度的局部特征连接在同一卷积层中,从而增加局部区域特征图的接受域;最后,在网络中添加一个尺度层,将顶层的特征图合并,获得细粒度的特征,提高了检测精度,特别是对小目标的检测。实验结果表明,与以往模型相比,该模型结构具有较高的精确度,需要的存储空间最小,能够高效检测并提取空间内的目标信息,实现智能监控。 展开更多
关键词 yolov4-tiny 移动翻转瓶颈卷积 空间金字塔池化
在线阅读 下载PDF
基于改进YOLOv4-tiny模型的车辆检测系统设计与应用
7
作者 宋爽 陈跃东 《中文科技期刊数据库(引文版)工程技术》 2022年第12期252-256,共5页
智慧交通系统旨在借助先进的信息与通信技术建成高效安全、环保舒适的交通运输体系,提供全方位的交通信息服务和安全高效、经济快捷的交通运输与出行服务。图像处理技术作为智慧交通系统的核心技术之一,通过对交通视觉图像的处理,为智... 智慧交通系统旨在借助先进的信息与通信技术建成高效安全、环保舒适的交通运输体系,提供全方位的交通信息服务和安全高效、经济快捷的交通运输与出行服务。图像处理技术作为智慧交通系统的核心技术之一,通过对交通视觉图像的处理,为智慧交通系统的感知、识别、检测、跟踪和路径规划等功能提供了最直接与最重要的信息,它的研究进展直接影响着智慧交通系统的部署。基于此本文提出一种基于改进的YOLOv4-tiny模型的图像识别算法进行车辆的检测,并利用DeepSort算法实现车辆的跟踪。此模型属于轻量化模型,可以在小型设备上搭载,便于实现边缘计算,缓解监控中心的数据处理压力。 展开更多
关键词 模型训练 yolov4-tiny 车辆检测 车辆跟踪
在线阅读 下载PDF
基于改进轻量级YOLOv4-tiny的轮胎缺陷检测
8
作者 赵蒙蒙 张岩 《计算机与数字工程》 2025年第3期901-906,共6页
针对现有模型难以实现轮胎缺陷检测精度和速度平衡的问题,论文提出了一种基于改进的轻量级YOLOv4-tiny网络用于轮胎缺陷检测。在不增加太多计算成本的前提下,通过改进网络的特征融合部分,提高了对多尺度对象的表示能力。同时,结合超强... 针对现有模型难以实现轮胎缺陷检测精度和速度平衡的问题,论文提出了一种基于改进的轻量级YOLOv4-tiny网络用于轮胎缺陷检测。在不增加太多计算成本的前提下,通过改进网络的特征融合部分,提高了对多尺度对象的表示能力。同时,结合超强通道注意力ECA-Net使卷积神经网络更好地关注重要特征,增强了轮胎缺陷特征的表达,弱化轮胎纹理背景等无关特征。实验结果表明,所提方法在轮胎缺陷数据集上实现了95.12%的mAP。轮胎的平均检测时间为18.97ms,而且模型参数量很小可以很容易地部署,因此该方法可以满足工业实时检测的需求。 展开更多
关键词 轮胎缺陷检测 yolov4-tiny 注意力机制 目标检测
在线阅读 下载PDF
基于改进YOLOv4-tiny的节肢动物目标检测模型
9
作者 余咏 吴建平 +2 位作者 何旭鑫 韦杰 高雪豪 《计算机技术与发展》 2024年第1期114-120,共7页
针对自然环境下节肢动物背景复杂、形态万千、遮挡目标和目标尺度多样等因素,导致模型检测效率不高、边界框定位不准确的情况,提出一种基于改进YOLOv4-tiny的节肢动物目标检测模型。首先,结合空间、通道卷积注意力机制(CBAM),抑制背景噪... 针对自然环境下节肢动物背景复杂、形态万千、遮挡目标和目标尺度多样等因素,导致模型检测效率不高、边界框定位不准确的情况,提出一种基于改进YOLOv4-tiny的节肢动物目标检测模型。首先,结合空间、通道卷积注意力机制(CBAM),抑制背景噪声;其次,引入可变形卷积(DCN)以及改进的加权双向特征金字塔,重塑卷积和特征融合方式进行多尺度预测;最后,在FPN网络中引出一层Feat@3,嵌入空间金字塔池化结构,有效提取节肢动物的各种显著特征,使模型泛化能力更强,将改进后的模型命名为YOLOv4-tiny-ATO。实验结果表明,该模型在大小仅为54.6 Mb的前提下,很好地平衡了检测速度和检测精度,检测精度为0.725,检测速度达到89.6帧·s-1,召回率为0.585,较改进前相比YOLOv4-tiny模型,检测精度提高0.426,模型在模型大小、检测速度上更适用于移动端部署,模型检测精度也能达到应用标准,满足对节肢动物的检测需求。 展开更多
关键词 节肢动物 目标检测 可变形卷积 yolov4-tiny 双向特征金字塔
在线阅读 下载PDF
基于改进YOLOv4-tiny的果园复杂环境下桃果实实时识别 被引量:2
10
作者 苑迎春 张傲 +2 位作者 何振学 张若晨 雷浩 《中国农机化学报》 北大核心 2024年第8期254-261,共8页
为实现果园复杂环境下的桃果实实时识别,提出一种基于YOLOv4-tiny的桃果实实时识别方法 YOLOv4-tinyPeach。通过在主干网络中引入卷积注意力模块CBAM,优化其通道维度和空间维度的特征信息;在颈部网络中添加大尺度浅层特征层,提高对小目... 为实现果园复杂环境下的桃果实实时识别,提出一种基于YOLOv4-tiny的桃果实实时识别方法 YOLOv4-tinyPeach。通过在主干网络中引入卷积注意力模块CBAM,优化其通道维度和空间维度的特征信息;在颈部网络中添加大尺度浅层特征层,提高对小目标识别精度;采用双向特征金字塔网络BiFPN对不同尺度特征信息进行融合。通过训练和比较,YOLOv4-tiny-Peach模型在测试集下的平均精度AP为87.88%,准确率P为91.81%,召回率R为73.84%,F1值为81.85%,相比于改进前,AP提升5.46%,P提升2.29%,R提升4.09%,F1提升3.44%。为检验改进模型在果园复杂环境下的适应性,在不同数目、不同成熟期和遮挡的情况下对果实图像进行识别,并与原模型识别效果进行对比,结果表明改进模型在三种情况下的识别精度均高于原模型,尤其在大视场和未熟期场景下模型改进效果显著。YOLOv4-tiny-Peach模型占用内存为27.4 MB,识别速度为49.76 fps,适用于农业嵌入式设备。为果园复杂环境下的桃果实自动采摘提供实时精准的目标识别指导。 展开更多
关键词 采摘机器人 目标识别模型 yolov4-tiny 果园 实时
在线阅读 下载PDF
YOLOv4-tiny的绝缘子缺陷检测算法
11
作者 刘维娜 钟宇宁 余兆钗 《武夷学院学报》 2024年第12期17-24,共8页
提出一种基于YOLOv4-tiny的绝缘子缺陷检测算法,该算法在YOLOv4-tiny的特征提取网络中加入有效通道注意力网络,明显增强从主干网络中提取的特征质量。在特征融合阶段,将原本的FPN改进成为两条特征融合路径双向特征金字塔结构,使不同尺... 提出一种基于YOLOv4-tiny的绝缘子缺陷检测算法,该算法在YOLOv4-tiny的特征提取网络中加入有效通道注意力网络,明显增强从主干网络中提取的特征质量。在特征融合阶段,将原本的FPN改进成为两条特征融合路径双向特征金字塔结构,使不同尺度特征之间能够更加充分的融合。最后在损失函数的设计上,使用能够解决检测过程中出现的正负样本数量不均衡问题的Focal损失代替二元交叉熵损失函数。实验结果表明:所提算法在平均分类精度和漏检误检方面有较大的提升,性能表现优异。 展开更多
关键词 绝缘子 电网运行安全 yolov4-tiny 特征金字塔 Focal损失
在线阅读 下载PDF
改进YOLOv4-Tiny的面向售货柜损害行为人体检测 被引量:1
12
作者 殷民 贾新春 +2 位作者 张学立 冯江涛 范晓宇 《计算机工程与应用》 CSCD 北大核心 2024年第8期234-241,共8页
无人货柜的安全检测一直是零售领域的热点话题。针对现有人工监控无法及时且有效地捕捉到部分消费者对自助售货柜及其内部商品的损坏行为这一问题,提出了一种改进YOLOv4-Tiny的面向售货柜损害行为人体检测方法。将真实场景采集到的监控... 无人货柜的安全检测一直是零售领域的热点话题。针对现有人工监控无法及时且有效地捕捉到部分消费者对自助售货柜及其内部商品的损坏行为这一问题,提出了一种改进YOLOv4-Tiny的面向售货柜损害行为人体检测方法。将真实场景采集到的监控视频进行预处理,完成对数据集DMGE-Act的制作,解决场景图像数据源不足的问题。提出了基于YOLOv4-Tiny的改进模型——YOLOv4-TinyX,通过修改神经网络的激活函数进行平滑逼近,分别在主干特征提取网络的最大特征提取层后引入CBAM,在加强特征提取网络中的上采样操作层后引入CA两种不同的注意力机制模块,并且进行了数据不平衡的修正,有效提升了算法的特征提取与检测能力。通过对比实验分析,改进后的模型参数量仅增加2×10^(4)的同时,平均精度均值mAP提升了10.29个百分点,结果表明该算法保持轻量化且对损害行为的检测精度有显著提升。 展开更多
关键词 无人值守 损害行为 yolov4-tiny 平滑逼近 注意力机制 轻量化
在线阅读 下载PDF
YOLOv4-Tiny的改进轻量级目标检测算法 被引量:11
13
作者 何湘杰 宋晓宁 《计算机科学与探索》 CSCD 北大核心 2024年第1期138-150,共13页
目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv... 目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv4-Tiny算法的主干网络的结构,引入了ECA注意力机制,使用空洞卷积改进了传统的SPP结构为DC-SPP结构,并提出了CSATT注意力机制,与特征融合网络PAN形成CSATT-PAN的颈部网络,提高了网络的特征融合能力。提出的YOLOv4-CSATT算法和原始YOLOv4-Tiny算法相比,在检测速度基本持平的情况下,对于信息的敏感程度以及分类的准确程度有了明显的提高,在VOC数据集上精度提高了12.3个百分点,在COCO数据集上高出了6.4个百分点。在VOC数据集上,相比Faster RCNN、SSD、Efficientdet-d1、YOLOv3-Tiny、YOLOv4-MobileNetv1、YOLOv4-MobileNetv2、PP-YOLO算法在精度上分别高出3.3、5.5、6.3、17.4、10.3、0.9和0.6个百分点,在召回率上分别高出2.8、7.1、4.2、18.0、12.2、2.1和4.0个百分点,FPS达到94。通过提出CSATT注意力机制提高了模型对于空间的通道信息的捕捉能力,并结合ECA注意力机制和特征融合金字塔算法,提高了模型的特征融合的能力以及目标检测精度。 展开更多
关键词 目标检测 yolov4-tiny算法 注意力机制 轻量级神经网络 特征融合
在线阅读 下载PDF
采用改进YOLOv3-Tiny模型的轻量化莲蓬质量分级算法
14
作者 张雷 严昊 +2 位作者 贾永镒 叶秉良 马锃宏 《农业工程学报》 CSCD 北大核心 2024年第23期248-257,共10页
精准高效的莲蓬质量分级算法是实现莲蓬采后自动化加工的重要一环。针对目前莲蓬果实的采后质量分级研究较少的问题,该研究建立了莲蓬果实质量分级原则,提出了改进YOLOv3-Tiny(you only look once version 3-Tiny)模型的莲蓬质量分级算... 精准高效的莲蓬质量分级算法是实现莲蓬采后自动化加工的重要一环。针对目前莲蓬果实的采后质量分级研究较少的问题,该研究建立了莲蓬果实质量分级原则,提出了改进YOLOv3-Tiny(you only look once version 3-Tiny)模型的莲蓬质量分级算法。首先在3种光照条件下架设摄像头垂直采集莲蓬图像并建立试验数据集,通过数据增强技术扩充数据集;接着使用K均值聚类算法重新设计先验锚框尺度,提高先验锚框的回归精度。随后以YOLOv3-Tiny原骨干网络为基础,加入空间金字塔池化模块(spatial pyramid pooling,SPP),提升网络提取特征信息的能力;最后利用YOLOv3-Tiny的参数进化模块为该模型进化出一套合适的超参数。试验结果表明,改进的YOLOv3-Tiny模型对莲子识别的平均精度均值(mean average precision,mAP)和召回率(recall)分别为96.80%和94.60%;与原YOLOv3-Tiny模型相比,mAP提高12.49个百分点,召回率提高11.59个百分点,并且每秒传输帧数达到25帧,是Faster R-CNN网络模型的1.24倍。试验数据说明所提改进算法对于莲蓬果实上的莲子具有更好的识别效果,而且满足实时检测的要求,可以为莲蓬质量分级研究提供技术参考。 展开更多
关键词 深度学习 分级 模型 yolov3-tiny 莲蓬 轻量化
在线阅读 下载PDF
改进YOLOv4-tiny网络的日用商品目标检测算法
15
作者 王林枫 左云波 +2 位作者 徐小力 周可鑫 范博森 《计算机应用与软件》 北大核心 2024年第11期319-326,365,共9页
针对基于移动平台的商品图像检测算法存在硬件要求高、模型复杂且精度低等问题,提出一种YOLOv4-tiny改进网络,减少网络参数与模型尺寸,提高网络精度,构建更高效的网络。将原有标准卷积替换为点卷积与逐深度卷积,特征提取使用CG模块,降... 针对基于移动平台的商品图像检测算法存在硬件要求高、模型复杂且精度低等问题,提出一种YOLOv4-tiny改进网络,减少网络参数与模型尺寸,提高网络精度,构建更高效的网络。将原有标准卷积替换为点卷积与逐深度卷积,特征提取使用CG模块,降低网络模型计算损耗。特征融合时,在原有特征金字塔(Feature Pyramid Networks,FPN)基础上添加PANity模块,缩短高低间卷积层的跨度。使用CSPConcat结构对此前各层融合特征进行特征优化处理,提高各层间特征融合的能力。利用k-prototypes算法优化日用商品数据集先验框的尺寸与数目。通过在darknet深度学习框架下,对日用商品数据集进行实验,得出改进后的算法平均精度(mAP)为98%,召回率为97%,较原网络提升了2.4百分点和2百分点,网络模型计算量较原网络降低了40.4%,模型存储文件缩小了55.9%。改进后的网络模型更轻量化、准确率更高,更加适用于部署在无人结算环节的低硬件水平嵌入式设备中。 展开更多
关键词 新零售 嵌入式 目标检测 日用商品 yolov4-tiny
在线阅读 下载PDF
多特征融合的YOLOv4-tiny带钢表面缺陷检测方法研究
16
作者 李锦达 汤勃 +2 位作者 孙伟 孔建益 林中康 《计算机应用与软件》 北大核心 2024年第12期208-213,254,共7页
微小表面缺陷自动识别是带钢生产过程中的研究难点之一。为了提高带钢表面缺陷检测的准确性,提出一种多特征融合的YOLOv4-tiny深度学习方法。引入Inception结构与多尺度信息。提取原始图片的方向梯度直方图特征(HOG),并与主干网络所提... 微小表面缺陷自动识别是带钢生产过程中的研究难点之一。为了提高带钢表面缺陷检测的准确性,提出一种多特征融合的YOLOv4-tiny深度学习方法。引入Inception结构与多尺度信息。提取原始图片的方向梯度直方图特征(HOG),并与主干网络所提取的高层特征相融合,作为特征金字塔结构的输入。实验结果表明,该算法在测试集中带钢表面缺陷mAP达到93.99%,相比原网络提高了13.57百分点,网络参数量相比于原网络减少约21万,网络检测精度有较大的提升。 展开更多
关键词 带钢 表面缺陷检测 特征融合 yolov4-tiny 深度学习
在线阅读 下载PDF
基于YOLOv4-tiny的无人机目标检测算法
17
作者 王新博 李杰 +1 位作者 王岩 姜涛 《通化师范学院学报》 2024年第12期53-59,共7页
无人机作为一种新兴的信息与物质传输工具,具有极高研究价值.受限于无人机硬件条件,嵌入无人机的目标检测算法需要轻量化的模型.在无人机目标检测中,往往存在目标尺度变化大,图像存在相移和目标遮挡的问题,导致检测精度降低.针对无人机... 无人机作为一种新兴的信息与物质传输工具,具有极高研究价值.受限于无人机硬件条件,嵌入无人机的目标检测算法需要轻量化的模型.在无人机目标检测中,往往存在目标尺度变化大,图像存在相移和目标遮挡的问题,导致检测精度降低.针对无人机目标检测精度低的问题,该文提出了一种基于YOLOv4-tiny的改进算法.该改进算法基于YOLOv4-tiny算法模型,融合了递归特征金字塔以加强特征语义表达,设计了可融合深层特征与浅层特征的特征转换和特征融合模块以增强算法性能,提升算法精确度.经Visdrone数据集训练、测试,mAP值达到了0.146,算法精确度优于其他同级轻量化算法. 展开更多
关键词 yolov4-tiny 递归特征金字塔 目标检测 特征融合
在线阅读 下载PDF
基于通道剪枝的改进YOLOv7-tiny舰船识别算法
18
作者 张上 熊中越 王恒涛 《电光与控制》 北大核心 2025年第4期31-36,共6页
海上舰船目标识别是海洋监测的重要一环,也是世界各海岸地带国家国土安全的重要解决方案之一。针对SAR图像舰船目标检测存在识别精度低、训练模型大等问题,提出了一种基于通道剪枝的改进YOLOv7-tiny海上舰船识别算法。首先,采用MobileNe... 海上舰船目标识别是海洋监测的重要一环,也是世界各海岸地带国家国土安全的重要解决方案之一。针对SAR图像舰船目标检测存在识别精度低、训练模型大等问题,提出了一种基于通道剪枝的改进YOLOv7-tiny海上舰船识别算法。首先,采用MobileNetV3替代原有主干网络,以降低模型的计算量和体积,实现模型轻量化;其次,引入MPDIoU简化计算过程,优化模型的收敛性;最后,通过通道剪枝提高模型精度,同时平衡模型体积和计算量的降低幅度,进一步优化算法模型。实验结果表明,改进算法相对于YOLOv7-tiny,召回率提升了5.85个百分点,mAP提升了3.69个百分点,参数量减少了63.35%,计算量减少了70%。 展开更多
关键词 目标检测 yolov7-tiny SAR图像 轻量化模型 通道剪枝 损失函数
在线阅读 下载PDF
基于改进YOLOv4-Tiny算法的机械零件识别
19
作者 杨一帆 靳伍银 +1 位作者 薛文亮 王浩浩 《机械设计》 CSCD 北大核心 2024年第7期61-65,共5页
为实现机械零件的精准快速识别,文中提出了一种基于改进的YOLOv4-Tiny算法的机械零件识别方法。该方法融合了注意力机制和K-means++聚类算法,采用CSPDarknet53-Tiny网络作为主干网络,并将卷积注意力机制模块(Convolution Block Attentio... 为实现机械零件的精准快速识别,文中提出了一种基于改进的YOLOv4-Tiny算法的机械零件识别方法。该方法融合了注意力机制和K-means++聚类算法,采用CSPDarknet53-Tiny网络作为主干网络,并将卷积注意力机制模块(Convolution Block Attention Module, CBAM;Global Attention Mechanism, GAM)加在YOLOv4-Tiny主干网络与特征金字塔的连接处及其上采样处,在不影响主干网络的条件下,对每个通道的特征信息重新压缩并提取,过滤掉冗余特征信息,保留重要特征信息,并重新分配权重;再用K-means++聚类算法得到一组与机械零件图像数据集相匹配的先验框参数。试验结果表明,与传统的YOLOv4-Tiny算法相比,改进后的YOLOv4-Tiny算法在保证实时性的前提下,平均召回率和平均准确率分别达到99.43%和99.41%,可以准确检测并定位机械零件图像的位置。 展开更多
关键词 yolov4-tiny算法 机械零件识别 CBAM GAM K-means++聚类算法
在线阅读 下载PDF
基于轻量化模型YOLOv4-tiny的目标检测改进 被引量:1
20
作者 张军 郑黎明 刘先禄 《阜阳师范大学学报(自然科学版)》 2023年第2期58-65,共8页
针对实际场景中需要高速检测但硬件设备的处理器性能较弱,不能得到应有的检测效果的问题,本文以YOLOv4-tiny作为框架,提出一种轻量化模型的方法。首先构建空间金字塔空洞卷积(Spatial-pyramid-dilation, SPD)模块,提取更多目标特征;其... 针对实际场景中需要高速检测但硬件设备的处理器性能较弱,不能得到应有的检测效果的问题,本文以YOLOv4-tiny作为框架,提出一种轻量化模型的方法。首先构建空间金字塔空洞卷积(Spatial-pyramid-dilation, SPD)模块,提取更多目标特征;其次减少跨级部分(Cross-Stage-Partial,CSP)模块的第二分支的一个Concate,增加1×1卷积,降低网络的计算复杂度;最后将压缩激活(Squeeze-and-excitation,SE)模块置于CSP模块之前,提升检测性能,通过轻量化特征增强网络能够改善对小目标检测效果。实验结果表明,改进后的模型相较于原YOLOv4-tiny,平均精确率提升了6.3%,平均查全率提升了3.9%,实现了YOLOv4-tiny的轻量化改进。改进后模型轻量化程度较大,能够实现高速检测,适宜在性能较弱的移动设备上部署。 展开更多
关键词 yolov4-tiny 目标检测 通道注意力 轻量化 高速检测
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部